
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by:
On: 21 January 2011
Access details: Access Details: Free Access
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-
41 Mortimer Street, London W1T 3JH, UK

International Reviews in Physical Chemistry
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713724383

Non-equilibrium behaviour in isothermal liquid chemical systems
C. Vidala; P. Hanussea

a Centre de Recherche Paul Pascal, C.N.R.S.-Universite dé Bordeaux I, Domaine universitaire, Talence,
Cedex, France

To cite this Article Vidal, C. and Hanusse, P.(1986) 'Non-equilibrium behaviour in isothermal liquid chemical systems',
International Reviews in Physical Chemistry, 5: 1, 1 — 55
To link to this Article: DOI: 10.1080/01442358609353364
URL: http://dx.doi.org/10.1080/01442358609353364

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713724383
http://dx.doi.org/10.1080/01442358609353364
http://www.informaworld.com/terms-and-conditions-of-access.pdf


INTERNATIONAL REVIEWS IN PHYSICAL CHEMISTRY, 1986, VOL. 5, No. 1, 1-55 

Non-equilibrium behaviour in isothermal liquid chemical systems 

by C .  VIDAL and P. HANUSSE 
Centre de Recherche Paul Pascal, C.N.R.S.-Universitk de Bordeaux I, 

Domaine universitaire, 33405 Talence Cedex, France 

This paper reviews the main features, goals, and achievements of a field of 
research that is now commonly referred to as ‘Chemical Dynamics’. This is neither 
‘Molecular Dynamics’, nor ‘Chemical Kinetics’, in the traditional sense, but rather, 
the study of the universal properties of time evolution and/or spatial structure of 
chemical systems evolving far from equilibrium. 

This field has emerged over the last fifteen years. It has produced a great variety 
of new insights on the capability of chemical systems to organize spontaneously. It 
constitutes the contribution of Chemistry to the general interest that developed in 
practically all fields to address the question of creation of patterns and their 
evolution. 

As indicated by the title, we shall only consider examples of liquid systems, at 
fixed temperature, and in homogeneous conditions. Therefore, we leave out other 
types of systems that may give rise to similar or related behaviours, like gas reactions, 
combustions, electrochemical and heterogeneous systems, or any chemical 
engineering processes. In fact, most of the results, definitions as well as general 
behaviours, can be transposed to these systems. This points out the universality of 
the approach. 

A general overview of the field is given first and may be considered as a short 
version of the paper. Next, two sections are devoted to a more refined and 
formalized approach to temporal and spatio-temporal phenomena respectively. In 
both sections, experimental as well as theoretical tools are presented. Topology 
being an important aspect of these phenomena, we present many more pictures than 
equations. The article concludes with a chemical recipe that everyone should try. 

1. Introduction 
Over the course of a chemical reaction certain species, named reactants, are 

converted into other ones, labelled products. In most cases, this conversion takes place 
monotonically. Sometimes, however, a non-monotonic evolution may arise in a 
homogeneous reacting system evolving far from equilibrium; moreover, inhomogen- 
eity may develop spontaneously. A wide range of exotic behaviours, time and/or space 
dependent, are thus encountered in chemical systems: periodic oscillations, chaos, 
hysteresis, spatial structures and chemical waves, for instance. 

These unfamiliar phenomena appeared at first inconsistent with the second law of 
thermodynamics which, according to Boltzmann’s statistical interpretation, implies 
maximum disorder. Nevertheless, Glansdorff and Prigogine (B 197 l)? have theoreti- 
cally demonstrated that thermodynamics does not rule out at all spontaneous 
‘organization’ of an open system, provided it evolves away from equilibrium. It is only 
at or near equilibrium that uniformity and monotony result from thermodynamic laws, 
according to the minimum entropy production theorem. These authors have coined the 

t References to the separate lists of books, conference proceedings and review articles are 
prefixed B, C or R. 
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2 C. Vidal and P. Hanusse 

vivid phrase ‘dissipative structures’ for these ‘ordered’ behaviours, whose occurrence 
requires a flux of energy and/or matter. From a thermodynamic point of view, there is a 
sharp distinction from equilibrium structures, such as crystalline forms, with which we 
are familiar. 

A second universal requirement comes from dynamical systems theory, and states 
that the dynamics must obey non-linear equations. The mass action law and the 
Arrhenius temperature dependence of rate constants make this condition easy to meet 
in chemical kinetics. However, non-linearity being a necessary but not sufficient 
condition, self-organization is not so widespread among reacting systems as one would 
perhaps expect. This can explain, at least in part, the rather late discovery of the above- 
mentioned non-linear dissipative phenomena. 

Many areas are, in fact, concerned with non-linear behaviour developing in 
dissipative systems evolving out of equilibrium so that, over the years, a cross- 
disciplinary field of research has emerged, ranging from mathematics to biology. We 
emphasize that self-organization is a basic feature of the living world. In this review we 
restrict ourselves to a limited part of the field. We intend to deal only with liquid 
systems undergoing a chemical reaction whose heat release or sink is negligible. 
Though such a restriction may appear quite severe at first, it will rapidly be seen how 
substantial this area of study already is. Our aims will be to present the main results 
collected until now and to outline some of the problems which still remain to be solved. 
Since there is a huge number of papers devoted to these questions, not all of them can be 
cited here: no attempt is made to draw up an exhaustive survey of the literature; the 
references are chosen mainly for convenience.? Readers interested in other topics such 
as mathematics, thermodynamics, chemical engineering, biochemistry, biology, and 
their applications can find more specific reviews. 

This article is divided into three parts. Section 2 presents a ‘coarse-grained’ 
overview of the history and phenomenology of self-organization in chemical systems. It 
is especially designed for those who look for a broad picture of this domain of physical 
chemistry. The two other parts supply a deeper insight on temporal (section 3) and 
spatio-temporal (section 4) behaviours, whose present stage of knowledge and 
understanding is summarized as simply as possible. Finally we have listed separately at 
the end a sample of review articles, conference proceedings and relevant monographs 
which provide the basis for a comprehensive approach to this domain and its related 
topics. 

2. General overview 
2.1. Brief historical survey 

Homogeneous oscillating reactions in liquids were first discovered by chance. The 
earliest report seems to be due to Bray (1921) who observed an unexpected periodic 
decomposition of H,O, in the presence of 10; .  Because Bray was seeking for long 
time-scale stability of hydrogen peroxide solutions, the importance of the fundamental 
problem implied by this finding escaped his attention. Nobody fully recognized its 
importance until the end of the sixties. 

A very similar discovery was also made by accident in 1958 (or presumably in 1951) 
by a biochemist, Belousov (1959). He found oscillations during the catalysed oxidation 

?Despite their true importance, we do not refer to the many papers published in East 
European countries, in particular the Soviet Union. Indeed, except for a few of them, they are still 
hardly accessible (see Krinsky C 1984). 
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Non-equilibrium behaviour in chemical systems 3 

of citric acid by bromate in acidic medium. Using the redox catalyst Ce3+/Ce4+, one 
sees the solution going back and forth between yellow and colourless, a witness to the 
oscillating character. Later, this reaction was studied in detail by Zhabotinsky and, 
since 1968, by many others. It is now well known as the Belousov-Zhabotinsky (BZ) 
reaction. 

The very existence of such homogeneous chemical oscillators remained almost 
unknown for a Iong time, and few paid attention to them. The turning point took place, 
seemingly, in 1968. Among the different reasons one can think of, two circumstances 
deserve a special mention: a meeting held in Prague (Chance et al. C 1973), where not 
only did Western scientists become aware of the BZ reaction, but also a comparison 
was drawn with damped oscillations observed some years before in two important 
metabolic pathways, namely glycolysis (Duysens and Amesz 1957) and photosynthesis 
(Wilson and Calvin 1955); and the Prigogine-Lefever proposal of a very simple scheme 
(the celebrated ‘Brusselator’ or ‘trimolecular model’; see table l), involving only two free 
species interacting in four steps, which exhibits sustained oscillations beyond a Hopf 
bifurcation. 

Once it was realized that: 

(i) thermodynamics does not at all forbid oscillations far enough from 
equilibrium, 

(ii) oscillations might be a standard mode of metabolic process in living systems, 

the real importance of chemical oscillators began to be recognized. Since that time, an 
impressive number of studies (theoretical, numerical and experimental) have been 
reported, dramatically increasing our knowledge and understanding of non- 
equilibrium phenomena. There is now at least one international meeting each year 
devoted to this field of research. 

Despite very many studies, chemical oscillators still remain rather few. For 
historical reasons they are usually classified as halogen-based and halogen-free 
oscillators. The halogen families are based upon iodate (Bray 1921), bromate (Belousov 
1959) and chlorite (De Kepper et al. 198l)chemistry. The chlorite systems were the first 
chemical oscillators systematically designed according to a phenomenological ap- 
proach known as the ‘cross-shaped phase diagram’ (Boissonade and De Kepper 1980). 
Their discovery, which occurred only recently, proves the efficiency of a logical 
procedure. Halogen-free oscillatorst were also found during the past three years: the air 
oxidation of benzaldehyde catalysed by cobalt (Jensen 1983), the methylene blue- 
sulphide-sulphite reaction (Burger and Field 1984) and the hydrogen peroxide- 
sulphide reaction (Orban and Epstein 1985). These are the first members of a new 
family of sulphur-based oscillators which is currently in the way of being built up. It is 
worth noting that some among them give rise to oscillations in a basic medium. 

Though oscillations were studied first, it must be emphasized that several other 
non-linear behaviours deserve an equal, interest: multistability (e.g. bistationarity, 
birhythmicity, etc.) and its corollary, hysteresis; and deterministic chaos, that is, a 
seemingly erratic evolution yet describable by a few differential equations. Fur- 
thermore, not only time-dependent phenomena but also spatial self-organization of an 
initially uniform reacting medium is encountered. Spatial ‘stationary’ structures and 
chemical waves, first reported by Zaikin and Zhabotinsky (1970), have been extensively 

t We do not mention here the biochemical oscillators which are beyond the scope of the 
present paper. For a survey of oscillators in living systems see Berridge el al. (C 1979). 
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4 C. Vidal and P .  Hanusse 

studied over the past fifteen years. Nonetheless, the interplay between reaction, 
convection and diffusion in these spatial chemical structures is not yet really elucidated. 

Space-dependent phenomena raise several fundamental questions. Does the 
observed symmetry-breaking take place spontaneously or not? Is there any chemical 
instability at the origin of these spatial structures? Because they strongly resemble (at 
least in some cases) living forms, it is tempting to consider them as a possible source of 
morphogenesis, in agreement with the early prediction of Turing (1952). However, 
experimental evidence is still lacking and many difficulties will have to be overcome 
before reaching a clear answer. 

Direct experimentation on chemical media is not the only research technique. 
Numerical simulations have also proved to be useful and fruitful in this field. Many 
‘chemical models’ have been designed to this end. The simplest, proposed by Schlogl 
(1972), accounts for bistationarity and hysteresis. Especially designed for theoretical 
analysis, it involves a single independent variable X (see table 1). Yet Lotka was the first 
to imagine a two-variable model giving rise to damped (1910) and sustained (though 
marginally stable) oscillations (1920). Later on, Volterra (1931) enlarged the work of 
Lotka in an ecological context. Since the appearance of the Brusselator (Prigogine and 
Lefever 1968) many other models have been submitted to analytical and/or numerical 
study. 

From an analytical point of view, bifurcation theory is very suitable in understand- 
ing the deterministic features of a model (Auchmuty and Nicolis 1975). On the other 
hand, standard stochastic analysis points out the importance of thermodynamic 
fluctuations near a bifurcation point. There, molecular dynamics studies confirm that 
long-range fluctuations may no longer obey Poisson’s law as they do in general 
(Boissonade 1982). 

Computer simulations lead to the same kind of results. Recently, special routines 
have become available to chemists, enabling them to determine the evolution of a 
homogeneous reacting system, without requiring any programming. The only thing the 
routine needs is the chemical scheme, written in its usual form (Gottwald 1979). Then, 
given a set of initial conditions and ra,te constants, one gets the temporal behaviour as 
the output, whatever the number of intermediate species (up to 20) and elementary 
steps. The achievement of integration procedures based on a Monte Carlo method 
(Hanusse 1973, Hanusse and Blanch& 1981 a, b) is of great interest with respect to 
stochastic analysis. Indeed, they provide quantitative information on the sue and 
amplitude of fluctuations and on their evolution. Thus, a direct comparison with 
theoretical predictions becomes possible. 

Many efforts have been made to work out the mechanistic details of chemical 
oscillators. Most of them are devoted to the BZ reaction and bromate oscillators 
(Noyes 1980), from whence derives most of the reported experimental data. The main 
features of the most widely accepted chemical mechanism were proposed by Field et al. 
(1972); they are displayed in table 2 and summarized idsection 2.3. A simplified version, 
named Oregonator (see table l), was derived later by Field and Noyes (1  974 b). Thanks 
to a drastic reduction in the number of independent variables (three chemical species) 
and steps (five elementary reactions), the Oregonator is much more fitted to tractable 
mathematical analysis and computer simulations. An appropriate scaling, taking into 
account the large differences between rate constants, can then be used to generate a 
simpler two-variable model (Tyson B 1976). Despite all these simplifications, it is 
striking to note that the model is still able to account in a semi-quantitative way for 
oscillations, bistability and travelling waves in the BZ reaction (Tyson 1985). 
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Non-equilibrium behaciour in chemical systems 5 

Table 1. Examples of ‘chemical’ models. 

Schlogl’s model Brusselator Oregonator 
(Schlogl 1972) (Prigogine and Lefever 1968) (Field and Noyes 1974 b) 

A + ~ X P  3X A s X  A+YaX+P 

XaE 2XpA+P 

XPB 2x + Y P 3 X  XSYP2P 
Model B+XeY+D A + X P ~ X  + 22  

Z$hY 

Initial theoretical model theoretical model model of the BZ reaction 
aim of bistationarity of stable sustained X:HBrO,; Y:Br-; Z:Ce4+ 

h :mean stoichiometric factor 
oscillations A:BrO;; P:HOBr 

Standard notations: X, Y, Z are free intermediate species whose concentrations may vary, whereas 
the concentrations of A, B, etc. are assumed to keep fixed values (constraints). 

2.2. Non-equilibrium phenomenology 
At this point we shall briefly review the salient features of the non-equilibrium 

behaviours to be discussed in this paper. Our purpose is to give the reader a flavour of 
the unfamiliar phenomena exhibited by certain reacting systems far from equilibrium. 
Accordingly, in this section, we describe bare experimental facts. Explanations, 
interpretations and discussions will come in sections 3 and 4. 

2.2.1. Temporal behaviours 
Let us begin with a few experimental examples of various dynamical behaviours in 

homogeneous uniform systems. Thus, we consider chemical reactions taking place in 
well-stirred open or closed reactors, excluding, for now, any diffusion process and 
related spatio-temporal patterns. 

(a) Oscillations 
In figure 1 (a)  is presented a stable sustained oscillation such as can be obtained in a 

CSTR (see definition in section 2.4). Note the very regular and reproducible shape and 
period of the concentration-time dependence. Figure 1 (b)  presents the Fourier 
transform of the time series. This type of analysis is extensively used in studying 
complex or chaotic behaviours. Here the perfect periodic character of the time 
evolution is characterized by sharp peaks at frequencies corresponding to the basic 
oscillation frequency and its harmonics. These harmonics simply reflect the non- 
sinusoidal shape of the oscillation. Depending on the quality of the experimental set- 
up, in particular the stability of pumping devices, the relative stability of period can be 
better than 1%. 

In figure 2, composed oscillations are depicted. Each graph represents a time 
evolution. From figures 2 (uHh), changing the residence time in the reactor, one 
observes a continuous change in the steady oscillating regime, from a simple oscillation 
(a) to another (h) through what is called ‘composed oscillations’. A succession of large 
and small oscillations repeats in a very regular and periodic way. Notice that, although 
complex, this behaviour is still purely periodic. Each sequence of composed oscil- 
lations, no matter how complex, is repeated identically. 
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6 C.  Vidal and P. Hanusse 

loo 

Figure 1. A periodic regime of the BZ reaction (Vidal et al. 1982). (a) Time series: Ce4+ 
concentration (a.u.) versus time (seconds). (b)  Fourier spectrum: power spectral density 
(logarithmic scale) versus frequency (mHz). 

a 

b 

C 

e 

f 

h 

Figure 2. Time series of various composed oscillations (Epstein 1984). 
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Non-equilibrium behaviour in chemical systems 7 

(b) Bistability and birhythmicity 
In figure 3 is presented a diagram which describes the dependence of steady-state 

concentrations as a function of a control parameter, namely the influx of species KIO, 
in the Briggs-Rauscher (1973) reaction conducted in a CSTR. This experiment shows a 
number of interesting phenomena. Bistability, that is, existence of two possible stable 
states for the same value of the control parameter, appears on the left side (states I1 and 
111). Tristability exists in the central region (states 1’, I1 and 111). On the right side, there 
is bistability between a steady state (state 111) and an oscillating regime (state I). When 
two oscillating regimes coexist, one speaks of ‘birhythmicity’. An example is shown in 
figure 4. It depicts the steady time evolution for various values of the flow rate. Two very 
different types of oscillating state can be obtained for the same value of the flow rate. 
This experiment also shows a means of forcing a transition from one state to the other, 
here by changing temporarily a control parameter, and revealing, or rather using, the 
hysteresis phenomenon associated with bistability. 

(c) Deterministic chaos 
Predicted by Ruelle (1973), another unfamiliar behaviour, known nowadays as 

‘deterministic chaos’, was discovered at the end of the 70s. This refers to a seemingly 
erratic evolution which, in fact, is easily accounted for by a few ordinary differential 
equations. We have seen that, in composed oscillations, small and large amplitude 
variations alternate regularly. Now, for a different set of constraints, this regularity 
disappears: small and large amplitude oscillations are mixed at random (see figure 5) 
and no periodicity is detected, at least on laboratory time scales (a few hours, a day or 

,/- 

*- & m  - 
I -  I 

3 I 5 6 7 
fi1031o mde F )  

Figure 3. Experimental study of a tri-stable system (De Kepper 1978). State I undergoes a 
bifurcation leading to a limit cycle whose amplitude is represented by vertical bars. 
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8 C .  Vidal and P .  Hanusse 

Figure 4. Birhythmicity. Forced transition from one oscillating state to the other (Alamgir and 
Epstein 1983). 

- 2  

- 6  
1W 200 300 LOO 500 0 

Figure 5. A non-periodic regime of the BZ reaction (Vidal et al. 1982). (a) Time series. (b) 
Fourier spectrum. Same conditions as in figure 1, except an increase of the feed flux. 

so). The Fourier spectrum exhibits a ‘broad band’, well above the experimental noise 
level. In this respect, the great difference from periodic oscillations is obvious, 
comparing figure 5(b) with l(b). Careful analysis has shown that the ‘dwarfed’ 
oscillations of figure 5(a) do reflect the chemical dynamics rather than imperfect 
experimentation. These observations thus provide an illustration of the mathematical 
concept of ‘strange attractor’. Moreover the birth of such a deterministic chaos takes 
place through theoretically well identified ‘routes’ (or ‘scenarios’). Figure 6 displays an 
example of the most famous route, i.e. the period-doubling cascade. At each step, an 
oscillation gives place to another one having about twice its period (sub-harmonic 
bifurcation). This process converges rapidly and, eventually, chaos is reached. 

2.2.2. Spatial self-organization 
In an unstirred reacting medium, spatial self-organization can take place, as 

discovered about twenty years ago. If an initially-homogeneous mixture is poured onto 
a flat surface, or into a tube, spatial uniformity may be destroyed after a while. 
Stationary structures and/or chemical waves emerge spontaneously in a medium left at 
rest. Several fundamental questions are raised by these facts, especially about symmetry 
breaking. But let us first have a glance at these striking phenomena. 
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Non-equilibrium behaciour in chemicd s y s t e m  9 

time 
D 

Figure 6. First steps of a period-doubling cascade exhibited by the BZ reaction (Simoyi rt u1. 
1982). The dots above each time series correspond to one period and show the doubling 
phenomenon due to sub-harmonic instability. 

(u) Spatial structures 
Bromate oscillators have been reported several times to give rise to ‘stationary’ 

patterns in shallow layers. The typical width of these structures is, say, 2-3 mm. Many 
different forms are obtained spots, noodles, etc. The very nature of these patterns is not 
yet identified for sure. Convection is likely to have something to do with them. Neither 
surface effects, nor gaseous exchanges through the free surface can be disregarded. 

Recently, it has been shown that a chemical oscillator is not at all necessary to 
generate stationary patterns. A monotonic photochemical reaction, for instance, may 
be used as well. Plate 1 reprcscnts an example of structures thus observed in a Petri dish. 

For the sake of simplicity, all stationary structures will, in this paper, be referred to 
as reaction-convection patterns. 

(b) Chemical waves 
Quite different from the above-mentioned structures are the chemical waves 

developing in an active (i.e. oscillatory or, at least, excitable) medium. Sharp, or 
sometimes fuzzy, concentration fronts propagate at a speed of a few millimeters per 
minute throughout the quiescent reacting mixture. In visible light they are easily 
observed with bromate reagents using the ferroin (iron-1-10-tris-phenanthronile 

Plate 1 .  Spatial stationary pattern obtained by light irradiation of a saturated solution of 
mercury dithkonate. (Courtesy of Dr. J. C. Micheau.) 
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10 C. Vidal and P. Hanusse 

complex) as a redox catalyst. Red in its reduced form (Fez+), this dye turns to blue when 
oxidized (Fe3 ’). In thin layers, target patterns, i.e. sets of concentric rings, propagating 
outwardly from a point named the ‘centre’, are commonplace (Plate 3). If one breaks a 
circular wavefront, a pair of counter-rotating spirals may then be observed. A more 
sophisticated perturbation of a front is even able to produce multi-armed spirals 
(Plate 2). 

In three-dimensional devices, even more complex forms are obtained. Snapshots 
like that of Plate 5 are, however, difficult to take. Indeed, one has to avoid the formation 
by the reaction of gaseous bubbles which, moving up to the surface, would break the 
wavefront, thereby destroying the pattern. 

Almost all the reported chemical waves are those yielded by bromate reagents. 
However, waves are for instance also found in chlorite-iodine-malonic acid solutions. 
It is nowadays generally thought that waves are an outcome of the interplay between a 
chemical reaction and a (convection-free) diffusion of matter. In other words, chemical 
waves are considered as a pure reaction-diffusion process. 

Plate 2. Multi-armed spirals observed in a thin layer of an excitable BZ reagent (Agladze and 
Krinsky 1982). (Courtesy of Professor V. I. Krinsky.) 
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Non-equitibrium behaviour in chemical systems 11 

Plate 3. Two-dimensional target patterns exhibited by the BZ reaction in a layer of 1 mm 
depth. (Picture CNRS-CRPP.) 

.. . 

, 0 4 -  

Plate 4. Pseudo-wave in a row of ten adjacent cells. The phase/frequency gradient of the 
Briggs-Rauscher oscillating reaction is responsible for the apparent propagation of blue 
(starch) fronts. (Sadoun-Goupil et al. 1982; Picture CNRS-CRPP.) 
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12 C .  Vidal and P. Ilanusse 

Plate 5. Three-dimensional chemical wave in the BZ reaction (Welsh et al. 1983). This picture 
appeared as the cover of a weekly issue of Nature in 1983, 304, No. 5927 (Courtesy of 
Professor A. E. Burgess.) 

2.3. Mechanistic characterization of oscillations 
One of the major challenges is to understand the mechanism of chemical oscillators. 

Designing the detailed chemical mechanism of any complex reaction belongs to the 
most difficult tasks in chcmistry. Not only can many intermediate species never be 
directly observed, but also rate constants often come from highly hypothetical guesses. 
For this reason we will not report, here, on the mechanisms of the most recently 
discovered oscillators, which are still in their very early stage of development. 
Preliminary attempts have already been made to account for the minimal chlorite- 
iodide oscillator (Epstein and Kustin 1985), the oscillating benzaldehyde oxidation 
(Roelofs et al. 1983), and the methylene blue-sulphide-sulphite reaction (Burger and 
Field 1984). 

Nowadays a fairly general scheme describing how the chemistry proceeds is 
availablc for the bromatc-driven oscillators (the ‘classic’, i.e. cerium-catalysed BZ 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
0
9
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Non-equilibrium behaviour in chemical systems 13 

reaction and its many derivatives). We will here deal only with the skeleton of this 
mechanism. More refined and complete discussions of the chemistry of these oscillators 
are given by Noyes (1980) and Field (1985). 

The present description rests essentially on the proposal made by Field et al. (1972) 
for the cerium-catalysed system. This set of elementary steps, called the FKN 
mechanism, still provides the background of our knowledge, though it has been slightly 
modified and extended over the years. Basically the FKN model is based on an intrinsic 
bistabilityt involving two different processes A and B, which alternately dominate the 
kinetics. A third process C is responsible for the switch from B to A (see figure 7 for a 
schematic view). 

Process A removes Br - from the medium and produces molecular bromine 
according to the overall equation: 

(A) BrO; + 5Br- + 6H' = 3Br, + 3H,O 

This process is assumed to involve the following sequence of two-electron redox 
reactions between oxybromine species: 

(Rl) Br- +HOBr+H+ =Br,+H,O 

(R2) Br- + HBrO, + H +  = 2HOBr 

(R3) Br- +BrO; +2H+ =vOBr+HBrO, 

A = 3(Rl)+(R2)+(R3) 

Indeed, when all reactants except the metal-ion catalyst are mixed together, one 
does observe for a while that the solution turns brown due to Br, production. 

Process A dominant 
( reduced state) 

Condition : [Br-] =- [Br-1, 

net effect : 

I Process B dominant 
(pulse of oxidation 1 

Condition : [Br-] -= [Br-1, I 
net effect : 

Figure 7. Simplified sketch of the FKN mechanism decomposed in three processes A, B, and C. 

t It is striking to note that the previous and independent suggestion of Zhabotinsky et al. 
(1971)-or ZZKK model-also brings into play multistationarity as the basic ingredient of 
oscillations. 
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14 C. Vidal and P. Hanusse 

Once Br- concentration has been sufficiently lowered by process A, so that 
consumption of bromous acid by reaction R2 is very weak, process B sets in. It can be 
summarized as: 

(B) 4Ce3++BrO; +5H+=4Ce4++HOBr+2H,0 

Here is the very heart of the mechanism: that is, the single-electron oxidation of Ce3+ to 
Ce4+, carried out autocatalytically by BrOi (whereas the oxybromine species involved 
in process A have not the right potential to do that): 

(R4) 2HBr0, = HOBr + BrO; + H + 

(R5) HBrO, + BrO; + H +  = 2Br0; + H,O 
(R6) BrOi+Ce3++H+=Ce4++HBr0, 

(B) =(R4) + 2(R5) + 4(R6) 

Autocatalysis takes place through bromous acid, two molecules of HBrO, being 
produced by (R6) for each one consumed by (R5), while it is eventually limited by 
disproportionation in (R4). Experiments in flow reactors have confirmed that both A 
and B may actually take place under different conditions. 

Now, how does the reaction go back to process A when oscillations occur? One 
simply needs another process C, where Ce4+ is a reactant regenerating Br- (so that 
process B is inhibited again) and, in addition, is reduced back to Ce3+ (so that cerium 
acts as a catalyst). Such an overall process C can be written as, for instance: 

(C) 10Ce4+ + CH,(COOH), + BrCH(COOH), + 4Hz0  + 2Br, 

= 10Ce3+ + 5Br- + 6C0, + 15H' 

In fact, because an organic reductant (malonic acid in this example) is involved, many 
different steps should be taken into consideration. The above balance equation does 
not reflect precisely the overall changes, but merely outlines the following: bromide ions 
come from brominated organic species. This point is still not completely elucidated and 
according to very recent experiments (Varga et al. 1985) using *'BrCH(COOH),, 
bromo-malonic acid would not be the source of bromide ions. Whatever these details, 
process C is responsible for the feedback from B to A, so that the mechanism contains a 
closed loop, needed to account for the oscillatory behaviour. 

There is no need to say that, within an oscillating medium, the three processes 
develop simultaneously. Still, it is convenient to consider them separately in order to 
understand which concentrations oscillate rather than evolve monotonically. Rate 
differences between A, B and C over the course of the reaction provide the ultimate key. 
According to the FKN mechanism, oscillations take place as follows. 

When Br- concentration is fairly high, bromous acid stays at a low level (reaction 
R2), while the molecular bromine produced by (Rl)  reacts with malonic acid to form 
bromomalonic acid. Process B remains negligible because there is not enough HBrO, 
present to initiate the autocatalytic production of BrOi. However, since Br- is 
consumed by pmcess A, its concentration decreases; meanwhile, HBrO, slowly 
accumulates in the medium. Below some critical threshold [Br-I,, process B is no 
longer inhibited by reaction R2. It starts up and soon becomes dominant thanks to its 
autocatalytic nature. Then the high rate of Ce4+ production activates process C, which 
supplies Br- ions more and more rapidly. Beyond [Br-1, process B is suppressed and 
process A can restart. Meanwhile Ce4+ is reduced back to Ce3+, which is thus available 
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Non-equilibrium behaviour in chemical systems 15 

for a new pulse of oxidation. This whole sequence repeats itself, giving rise to 
oscillations. The main features of the mechanism, with respect to the three key variables 
Br-, HBrO, and Ce4+, are summarized in figure 7. The derivation of the simplified 
version named Oregonator (table 1) from this mechanism is almost straightforward 
(Field and Noyes 1974 b, Tyson B 1976). 

Oxygen effects are also well understood in the framework of the FKN mechanism. 
Oxygen may act very differently depending upon the reagent; either shortening the 
oscillation period, driving to oscillatory behaviour a medium otherwise merely 
excitable, or else suppressing previously existing oscillations. Nevertheless, all these 
effects can be explained assuming that oxygen affects only process C, whereas processes 
A and B remain unperturbed. 

The FKN mechanism would not be complete until a full set of rate constants has 
been assigned to the different steps. In the list given in table 2 (Tyson 1985) several 
values result not from direct measurement but from difficult guesses. Among these, the 
rate of disproportionation of HBrO, is especially dubious. Two independent direct 
attempts to determine experimentally this rate constant have led to very different 
results (Forsterling et al. 1980, Noszticzius et al. 1983). One of them agrees with the 
FKN estimation, but the second is lower by a factor of lo5. The critical bromide 
concentration [Br-1, at which process B becomes dominant essentially depends on the 
ratio k, lk , ,  the rate of process B being driven by kzlk, .  Once the value of k ,  is chosen, k ,  
and k ,  can always be adjusted to fit these two ratios which are well known 
experimentally. Therefore, two sets of rate constants k,,  k4,  k ,  are available (see table 3) 
corresponding to the so-called ‘Hi’ and ‘Lo’ cases, i.e. to a rapid or to a slow rate of 

Table 2. Rate constants or reactions R1 to R6 of the FKN mechanism. 

Reaction Rate constants 

R1 k , = 8 ~ 1 0 ~ M ~ ~ ~ - ~  k - l = l O Z ~ - ’  
R2 k Z = 2 x  1 0 ’ M - ’ ~ - ~  k - , = 5 ~  1 0 - 5 M - ’ ~ - 1  

R4 k 4 = 4  x 10’ M -  ’ S- k - , = 2 ~  lo-’’ M-’s-’ 
R5 k 5 =  1Q4M-, S - ’  k - , = 2 ~ 1 0 ’ M - ’ ~ - ’  
R6 k -  6 = 5 X 10’ M- ’ S -  ’ 

R3 k 3 = 2 M - 3  S - ’  k-  = 104 M - 1 - 1 

k6=6 x 10’ M-’ S- 

Table 3. The ‘Hi’ and ‘Lo’ sets of equally plausible rate constants. 

‘Lo’ ‘Hi’ 

k2. 106 2 x 108 

k4 2 x  103 4x108 

k5 10 2x103 

(M -’ s -  ’) 

(M-’ s - l )  

(M-*s- ’ )  
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16 C. Vidal and P .  Hanusse 

HBrO, disproportionation. Further studies are still required to determine which set 
must be rejected.? 

The name ‘bromate-driven oscillators’ is frequently used because no substitute is 
known for bromate. On the contrary, both the organic reductant and the catalyst can 
be widely changed. Now the skeleton of the FKN mechanism is able to account for 
many BZ-like reactions so generated, provided suitable modifications are made. At 
least three situations of this type are noteworthy. 

For instance, if Br- ions cannot be produced by process C+.g. either the catalyst 
is unable to oxidize the brominated organic species or, even, no such species is 
formed-oscillations may still occur. What is needed in that case is simply a 
sufficiently high concentration of molecular bromine. Indeed Br, hydrolysis will then 
produce the amount of bromide ions necessary to shift from process B to process A. It is 
appropriate to talk about bromine-hydrolysis-controlled (bromate) oscillators, a class 
to which presumably belong the reactions: Ce3+-Br0 ;-oxalic acid (Noszticzius and 
Bodiss 1979) and Mn2’-BrO;-tartronic acid (Adamcikova and Sevcik 1982). 

Another rather unexpected observation was the discovery of uncatalysed bromate 
oscillators. As a matter of fact, many organic reductants exhibit oscillations with 
bromate, even though no redox catalyst is present (Koros and Orban 1978, Chopin- 
Dumas 1981). Reaction R6, which can no longer occur in that case, should merely be 
replaced by a similar one involving the oxidation of an organic compound by BrO; 
(Orban et al. 1979). 

Nobody will be surprised to learn that the organic reductant may in turn be 
suppressed in a catalysed medium. Oscillations will still be observed if bromide ions are 
supplied to the medium at a proper rate. This is the so-called ‘minimal 
bromate oscillator’ (BrO-3-Br--Ce3+ or Mn2 + in a flow reactor) predicted by Bar-Eli 
(1981) and found soon after (Geiseler 1982, Orban et al. 1982). 

Much more difficult to explain within this framework are the oscillations taking 
place in a medium where bromide concentration is always kept at a very low level. This 
goal is easily achieved experimentally by adding Ag’ to the solution in order to 
precipitate AgBr (Noszticzius 1979). Therefore Br - cannot be the control species 
assumed by the FKN mechanism. Several possibilities are currently discussed, the 
search being mainly oriented towards organic and inorganic radicals, including Br. 
This problem has not yet been overcome and it must be admitted that our present 
understanding of the question is rather poor. 

2.4. Experimental tools 
The discovery of both oscillations and spatial structures took place in a very 

standard manner: once the chemicals were mixed altogether in a beaker or, more 
generally, in a closed vessel, people merely watched the colour of the solution. It 
changes more or less drastically (e.g. from red to blue for the ferroin-catalysed BZ 
reaction), because the reaction goes back and forth between a reduced and an oxidized 

t The values appearing in table 2, which are essentially those estimated by Field et al. (1972) 
are close to the ‘Hi’ set. Of course, the temporal behaviour is not expected to bring any answer to 
this question. Fortunately, calculations show that the two sets ofrate constants lead to significant 
differences between the profiles of waves developing in a ferroin-catalysed BZ medium. 
Concentration gradients should be noticeably less steep with the ‘Lo’ set. Thus, the answer could 
be an outcome of a thorough experimental investigation of waveforms. 
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Non-equilibrium behaviour in chemical systems 17 

state. Not only is this qualitative monitoring of the reaction too rough to allow for 
quantitative measurements but, also, conditions are such that only transients are thus 
observed. Indeed the system continuously drifts toward its equilibrium state, as long as 
there is no matter or energy input. Now, irreversible processes thermodynamics tell us 
that: 

(i) no structure or oscillation exists at equilibrium. 
(ii) equilibrium is always reached monotonically. 

These are the reasons why it is necessary to keep the reacting medium away from 
equilibrium, so as to maintain it in a 'permanent' regime where reliable quantitative 
measurements may then be carried out. 

When seeking for temporal behaviours, this goal is reached quite easily thanks to a 
constant feed of reactants (or, sometimes, of light energy (Laplante and Pottier 1982)). 
In order to ensure instantaneous homogeneity all over the reactor, strong mixing is 
required. So doing, one builds up a common device of chemical engineering: the 
continuously-fed stirred tank reactor (CSTR), schematically sketched in figure 8. For 
sake of simplicity the volume input and output flows are assumed to have the same 
value J ,  a very good approximation for all reactions we are interested in. Concentration 
changes inside this idealized reactor? are given by the balance equation of each 
species i (see notations in figure 8): 

dXi 
dt ( 1 )  -- - X i  = F , ( X )  + p(x9 -xi) i = I , .  . . , N x:(x,, . . . x i . .  . , x,) 

Total number of chemical species: N 

V l  
Mean residence time: z = ~ = - 

J P  

The second term, which is linear in X ,  simply represents the flux through the reactor, 
whereas the functions F, (X)  account for the chemical reaction itself. According to the 
kinetic mass action law, these functions usually contain one or several non-linear terms, 

OUTPUT 

J ; VOLUMIC FLOW 

v : VOLUME 

T : TEMPERATURE 

Xo,x ; CONCENTRATION VECTORS 

INPUT 
J,Xo 

Figure 8. Schematic sketch of a CSTR. 

t The idealization lies in the fact that X components are not space dependent in (1). However, 
a stirring strong enough to provide a good mixing on macroscopic length scales does not 
necessarily make this assumption valid. It fails, in fact, each time diffusion-controlled 
micromixing effects have to be taken into account. 
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18 C .  Vidal and P. Hanusse 

which means that (1) is a set of non-linear differential equations. Whatever the detailed 
expressions of the Fis, we can already draw some conclusions about the dependence of 
the long-time behaviour upon the magnitude of the mean residence time. 

If p is so large that any F , ( X )  becomes negligible compared to the linear flux term, 
then an obvious stationary solution is: 

I 

X i - X q ,  i = l ,  ..., N 

Its physical meaning is trivial: when the residence time is too short, the chemical 
reaction cannot develop to a significant extent and one observes a mere transport of 
matter through the reactor. While decreasing p from infinity, this stationary state 
remains stable along the ‘pumped branch‘, down to a certain limit p 2  (see figure 9). On 
the other hand, p = 0 corresponds to a closed system. According to thermodynamic 
laws, the system goes to the equilibrium state which corresponds to the minimum of the 
relevant potential (e.g. Helmholtz free energy at fixed Tand V). There: 

XS=Xe 1 1 )  i=1,  ..., N 

For small, but non-zero, values of p (i.e. of J )  the system leaves equilibrium but still 
stays in a stationary state. Indeed the minimum entropy production theorem asserts 
that only one such state is stable close enough to equilibrium, along the so-called 
‘thermodynamic branch’. This stationary state may possibly become unstable beyond a 
critical threshold p l ,  thanks to the non-linear terms of Fi. It is only in between these two 
limits (pl, p 2 ) ,  when they exist and for certain chemical reactions, that fairly unfamiliar 
behaviours will actually take place. 

Reactors used in laboratory experiments are in general made of Plexiglas or Pyrex: 
their volume lies between 1 and 100 ml. The feed of reactants is provided by peristaltic 
as well as syringe pumps, while an overflow pipe keeps the reacting volume constant. 
The range of explored residence times extends from a few seconds up to, say, lo4 s. Most 
often the reactor is thermostated, the temperature range not exceeding 280-350 K, 
since we are almost always dealing with aqueous media. The transition between 

Figure 9. Dynamic features predicted by equation (1) when varying the feed flux of a CSTR. 
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Non-equilibrium behaviour in chemical systems 19 

different non-stationary regimes is usually studied by varying the volume flow J .  For 
certain purposes, limitations result from the fact that the pumping rate cannot be 
scanned on a very fine mesh. Indeed, accuracy and stability of pumps is at most 0.1%. 
This is not fine enough for studying regimes which are stable over narrow windows of p 
values. 

Once a dynamical behaviour is settled in the CSTR (i.e. after decay of transients) the 
usual way to monitor the reaction involves either potentiometric or spectro- 
photometric techniques. Some other detection methods have occasionally been used, 
such as gas output (Bray 1921) of N.M.R. (Schluter and Weiss 1981). Both platinum 
reference electrodes and ion-specific (e.g. Br- or I-) reference electrodes? are brought 
into play by many experimental devices. Dissolved gas (02, CO,) may also be 
measured with membrane selective electrodes. The time constant of the latter being 
fairly large, a correction must be applied to the delivered signal so as to get significant 
information about non-stationary states. Ion-specific electrodes have, at least in 
principle, the advantage of being sensitive to only one species, thus giving a signal 
proportional to the logarithm of a single concentration. However, the sensor is a 
halogen crystal, so that the response obeys Nernst’s equation only over a concentration 
range limited by the solubility product. Furthermore, their time constant, though short 
( 5  1 s), is not negligible for all purposes. On the other hand, platinum electrodes, being 
sensitive to the many redox reactions developing in these media, deliver a signal which 
depends on the concentration of several species at the same time; in short, a ‘mixed’ 
signal. This is the case too, in general, when measuring the optical density of the 
medium at some wavelength, since the whole absorbance is the sum of individual 
absorbances. However, by decomposing the absorption spectrum of the cerium- 
catalysed BZ reaction, it has been shown that Ce4+ is the only species responsible for 
light absorption at 1 = 34&360 nm, at least at a significant level (Vidal et al. 1980). 
Therefore, spectrophotometric monitoring of this reaction at this wavelength provides 
a signal directly proportional to Ce4+ concentration. 

As an example, figure lO(a) displays the whole set of concentration data thus 
collected on a BZ medium during one period of oscillation. Differentiating these time 
series and then subtracting the contribution due to matter flux (equation (1)) yields the 
overall reaction rate of production (consumption, if negative) for each measured 
species, as shown in figure 10 (b). The same task can be achieved for heat release-or 
sink-by recording the temperature variations and monitoring the heat losses of the 
reactor. The BZ reaction appears to be very slightly exothermic (Lamprecht and 
Schaarschmidt 1978, Koros et al. 1979), heat being released only during a part of the 
oscillation (see figure 11; Vidal and Noyau 1980). 

Spatial self-organization menomena developing in a medium initially at rest 
cannot be studied in a similar way. Not only stirring but also feed flux-which implies 
convection coming from outside-are forbidden. The thermodynamic requirement of 
keeping the system at a given distance from equilibrium cannot be fulfilled, except if 
energy rather than matter flux is used to this end. Therefore, with the exception of 
photochemical processes, the experimental study of spatial structures has always dealt 
with transient phenomena until now. Besides, great care must be taken to prevent 
undesirable perturbations or effects such as, for instance, spontaneous desynchroniz- 
ation, hydrodynamic instabilities, and so on. In short, no standard cell or apparatus has 

f When studying the BZ system, a calomel reference electrode should not be put directly into 
contact with the solution because the reaction is highly sensitive to C1- ion. 
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20 C. Vidal and P. Hanusse 

B C D  

Figure 10. Oscillations of intermediate species in the BZ reaction (Vidal et al. 1980). 
(a) Concentration variations in the CSTR (pot, redox potential; X, unknown species). 
(6) Overall chemical reaction rates. 

Figure 11. Typical heat release during an oscillation of the BZ reaction (Vidal and Noyau 
1980). 

yet been built up which would provide the right theoretical and practical conditions 
required, as does the CSTR in the field of temporal behaviours. 

While spatial structures are not really difficult to generate under suitable 
conditions, their detailed quantitative analysis is far from being completed, due to these 
unresolved problems. Even the very nature of certain structures is hardly known and 
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Non-equilibrium behaviour in chemical systems 21 

remains a matter of guess-work. Up-to-date improvements deal with the optical 
observation of concentration profiles (Wood and Ross 1985). Diode arrays and 
automatic image-processing devices allow high-resolution measurements both in space 
and time. Further progress is still to be expected for sure in this widely-open field of 
experimental research. 

3. Temporal behaviour 
3.1. De$nition of variables and parameters 

From the point of view of the experimentalist, all the quantities that we are 
concerned with, when dealing with far from equilibrium chemical dynamics, can be 
shown to belong to one of two distinct classes (Pacault 1978). Variables that we can 
control will be called constraints, or control variables, or parameters, or even 
bifurcation parameters, the meaning of which should become clear later. Variables that 
we can only observe and measure will be called responses or state variables, the value or 
behaviour of which is determined by the inner dynamical processes, subject to the 
values of the constraints. Of course, this distinction is an essential ingredient of the 
theoretical description. One might consider this very universal distinction even 
somewhat trivial. Obviously, in any physical system, given various conditions 
(constraints) one observes various consequences (states). It is indeed universal, but, 
when studying dynamical systems, the understanding and description of the structure 
of the relationship between external control and internal state is the central and almost 
unique concern that we have. Furthermore, knowledge of the topology of this 
relationship suffices to describe all the possible states and changes, and, for most 
purposes, gathers all the information that we have to know about the system. This is a 
consequence of the universal topological properties of dynamical systems (Abraham 
and Shaw 1983). 

3.2. Dynamical states and bijiircations 
The value of responses, or their type of behaviour or regime, defines the state of the 

system. Usually we are not interested in transient behaviours, at least to qualify a state 
of the system. This state will be defined rather in relation to the long-time overall 
behaviour. The simplest state of that kind is the stationary steady state or, simply, 
steady state. Others may be oscillating states, quasiperiodic states, chaotic states, etc. 
To acquire the status of a ‘state’ or ‘regime’, a dynamjcal behaviour does not need to be 
simple+haos is not, as we shall see later-but it should be characterized by a few 
parameters. For example, an oscillation has a fixed amplitude and frequency. 
Sometimes it will be relevant to distinguish between various possible shapes of 
oscillations. But in general, a few quantitative parameters will define a state or a family 
of states. In most situations of interest, except the simplest, a dynamical state would be 
better described by the term ‘regime’, which is less static than ‘state’. 

Now, suppose that we have set up criteria to define various regimes. For a given 
value of the control parameters the system will be found in one particular state, or, 
depending on the initial conditions, in one among a few possible states, one at a time of 
course. Changing the &nstraints may then induce a qualitative change in the state of 
the system. At the point in constraint space where such a change occurs, we usually 
have what the mathematicians call a ‘bifurcation’, because a new regime appears, or 
changes stability, or exchanges stability with another one. We can keep this very loose 
definition of a bifurcation, or simply use the term ‘change of state’, and think of it very 
much as a change of state in a phase transition. We shall later come again to the analogy 
between bifurcations in dynamical systems and phase transitions (section 3.12). 
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22 C. Vidai and P .  Hanusse 

3.3. Representations and geometry of dynamics 
From what has been seen previously, the various ways that can be used to represent 

the information that characterizes the dynamics of a given system follows 
straightforwardly. 

3.3.1. Time series, evolution graph 
This is the most natural way to represent some dynamical property (see figure 12). 

In a given system, as many such graphs can be drawn as the number of variables. The 
set of constraints should be specified to understand under which conditions such a time 
evolution has been observed. 

Response 

time 

Figure 12. Time-series or evolution graph of a response or state variable. Constraints values 
should be specified for complete information. 

3.3.2. Trajectories, flows 
In the response space, also called phase space, we can plot the state of the system for 

each value of time, to obtain a trajectory that may be attracted, as in figure 13, by a limit 
set. This limit set may be a steady state (figure 13), a limit cycle (figure 14), or even a 
more complex structure (figure 15). Usually one represents projections in two or three 
dimensions of the trajectory in phase space. The real dimension is equal to the number 
of responses of the system. In chemistry, this number, usually unknown, may be very 
large. 

The set of trajectories that can be constructed is called a flow and is said to represent 
a ‘phase portrait’. The properties of a flow around a limit set reflect precisely those of 
the limit set. For instance, in figure 13 the topology of the flow is related to the presence 
of a ‘black hole’ that we call a ‘sink‘. These singularities of flows are precisely what we 
are looking for. When a bifurcation occurs, the topology of the flow changes 

TRnpanre ’ /- 

Response 2 

Figure 13. Trajectories in phase space or response space, also called phase portrait. The set of 
trajectories is called a flow. Point S is an attracting steady state (for a given set of 
constraints). 
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Non-equilibrium hehaviour in chemical systems 23 

3- 

2 -  

1 -  

I I I I 

0 1 2 3 4 Y -  
01 

Figure 14. Limit cycle of the ‘Brusselator’ (see table 1). Any initial state will converge towards 
the closed stable orbit. 

1. A 

‘X 

Figure 15. Strange attractor of the Lorenz model. 

Y = - X Z + r X - x  Pr=10; b=8/3; r=28  
x = Pr( Y - X )  

2 = X Y -  bZ. 

qualitatively. This qualitative change is the only event that really matters, that captures 
the dynamical relevant property of the system. For instance, in figure 14, the limit cycle 
may shrink gradually as the result of changing some constraint. At some point it will 
disappear, leading to a flow as as shown in figure 13. At this point, a ‘Hopf bifurcation’ 
occurs. 

3.3.3. State diagram 
This diagram gathers the global information which can be obtained on a system by 

locating, in constraint space, the various possible states, and the lines of transition from 
one state to the other (figure 16). Such lines are bifurcation lines. When the transition 
occurs with hysteresis, two lines must be investigated, one for each direction of 
,transition. In general, the way the transition occurs must be indicated in the state 
diagram. It may happen that the characteristics of transition change along a 
bifurcation line. It should be kept in mind that the ‘real’ state diagram, in particular in 
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1Ct 

1 0  

7, bistable 0 
e v 

b 

P +  
.+  

state II + 

4 
i + +  

+ i  

+ +  

1 ~ 7  - bistable 0 

b 

v e f  i 

.+ + i  

state II + +  + 
oscillations 

.I+ + + a 

1 
10-2 lo-’ 1 

lo+ 

[CH2 (COOH)2]o (M 1 
Figure 16. Experimental state diagram (Boissonade and De Kepper 1980). Notice the cross- 

shaped structure, appearing twice, that connects bistability and oscillation domains, a 
rather typical situation in chemistry. 

experiments, is a high-dimensional object. One usually determines only two- 
dimensional sections of it. As a result, depending on how and where this section is 
placed, the same dynamical behaviour may appear in several separated or almost 
separated domains. Experimentalists have called these features ‘isolas’ or ‘mushrooms’ 
after the shape of the corresponding bifurcation diagram (Gray and Scott 1985). They 
are not a dynamical behaviour by themselves. They rather reflect the complex shape of 
bifurcation boundaries or of the path followed through the state diagram. 

3.3.4. Bijiurcation diagram 
Such a diagram describes the dependence of steady-state features (concentration, 

amplitude of limit cycle, or any parameter characterizing the stationary regime) as a 
function of a constraint parameter. It is thus a response -constraint type of diagram. 
Examples follow in the next section. 
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Non-equilibrium hehaviour in chemical systems 25 

3.4. Bistability and hysteresis 
Let us now review dynamical phenomena, using the representations defined above. 

Bistability is one of the simplest and commonest behaviours that may be observed in a 
dynamical system. The corresponding bifurcation diagram appears in figure 17. In the 
central range of constraint values, three steady states coexist. The intermediary one is 
unstable, the two others are stable. For a given value of the constraint parameter, a 
perturbation of the response variable can force the system to jump from one state to the 
other. Another way to obtain this result is to sweep back and forth the constraint 
parameter, so revealing the hysteresis phenomenon associated to such a bistability. 
Now, in general, we can control several constraint parameters. One of them may 
control the width of the bistability region. At the very point where this width vanishes 
we obtain a triple steady state or critical point. We can then draw a three-dimensional 
bifurcation diagram, which represents the folded sheet of figure 18, a universal topology 
which is described by the catastrophe theory as the ‘cusp catastrophe’. In some cases, as 
in figure 3, more than two stable states or regimes can coexist. 

+Response 

,’ 
/’Unstable state 

I .  

/ I State 2 

c1 C2 Constraint 

Figure 17. Bifurcation diagram. State variable, steady state or amplitude of limit cycle, as a 
function of a constraint. At points C, and C ,  a bifurcation occurs. As in all other figures, 
dashed lines indicate unstable steady states. , 

Figure 18. Universal bistability bifurcation diagram, showing three ways to reach point B, 
starting from point A (i) by direct vertical transition at fixed constraints requiring an 
external perturbation on the response; (ii) at fixed constraint 2, by increasing constraint 1 
to fall over the edge of the fold, then backing up to point B, (iii) by changing both 
constraints, going around triple point T. Along this path no abrupt change of the response 
can be detected. 
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26 C .  Vidal and P. Hanusse 

3.5.  Excitability 
This is also a rather common behaviour in chemical systems. It is even more 

frequent in a biological context, where people have long ago studied this phenomenon, 
which is the basis of signal propagation in nerve membranes. 

Consider a stable steady state. Let us perturb it for a very short period of time. It will 
relax to the steady state in a smooth, simple, possibly exponential way. When the steady 
state is excitable, this behaviour can be observed as long as it is perturbed below some, 
usually low, threshold. But if the initial transient perturbation makes the system go 
above this threshold, the system undergoes a large excursion in state space before 
returning to the steady state (figure 19). Besides, usually, the shape and duration of this 
excursion is independent of the initial perturbation. This appears to be an intrinsic 
property of the dynamics. 

In figure 20 we give a topological description of this phenomenon in phase space. It 
is related to a very particular flow, which possesses an almost-closed orbit. Three steady 
states are involved, of which only one is stable. An experimental example of excitability 
appears in figure 21. 

3.6. Oscillations 
In figure 14 we gave an example of a ‘limit cycle’ which is a (here stable) closed orbit, 

to which converge (or from which diverge whenever unstable) all trajectories. This orbit 
is associated with an unstable steady state. It is important, in particular in experiments, 
to determine how this limit cycle appears or disappears, that is, which bifurcation is 

I I I 
tl t 2  time ’ 

Figure 19. Relaxation to steady state in an excitable system. At time t ,  the perturbation is 
below threshold. At time t 2  excitability occurs. 

I 
X *  

Figure 20. Phase portrait of an excitable system. Steady states U and C are unstable; steady 
state S is stable. When the system is pushed above the separatrix of C, instead of returning 
directly to S,  it will loop around the ‘almost limit cycle’. When C and S merge together 
(saddle-node bifurcation) a limit cycle is formed. 
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Figure 21. Experimental determination of phase space trajectory during excitability 
(De Kepper 1976). 

responsible for its formation. We have already cited the Hopf bifurcation, which is the 
‘standard’ way to form a limit cycle. The bifurcation diagram and phase portrait are 
shown in figure 22. Notice that the Hopf bifurcation itself occurs at the point where the 
cycle has zero amplitude. It is the principal characteristic of this transition, namely the 
cycle appears smoothly. 

In other circumstances this may occur through a ‘hard transition’, immediately with 
a finite amplitude. One example of such a bifurcation can be deduced from figure 20. 
When the unstable (saddle) steady state C coalesces with the stable (node) steady state 
S ,  through what is called a saddle-node bifurcation, the ‘almost-closed’ orbit becomes 
closed. A limit cycle has appeared. The relationship between excitability and limit cycle 
oscillation has been observed experimentally (De Kepper 1976). 

( a )  ( b )  ( C )  

Figure 22. Schematic bifurcation diagram and phase portrait for Hopf bifurcation. (a) 
Supercritical Hopf bifurcation associated with a stable limit cycle. (b) Subcritical 
bifurcation with an unstable cycle (c )  Generalized Hopf bifurcation. A local subcritical 
bifurcation is associated with a global limit cycle coalescence. Two cycles are involved, one 
stable, one unstable. 
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28 C. Vidal and P .  Hanusse 

A third kind of limit cycle bifurcation is depicted in figure 23. It is called a saddle- 
loop bifurcation. Two steady states are involved, One of them is a ‘source’, or unstable 
focus, the other one is a saddle. In this bifurcation the separatrices of the saddle cross 
each other, forming, at the bifurcation point, what is called a homoclinic orbit, in this 
case a saddle-loop. These last two bifurcations, which involve several steady states at 
finite distance, are called global bifurcations whereas the Hopf bifurcation is a local 
bifurcation. 

Away from the bifurcation, one usually observes ‘relaxation oscillations’, this name 
referring to the shape of the evolution graph of the concentrations, which presents 
fast transitions between slowly, varying states (figure 24). This particular type of 
oscillation, rather typical of far from equilibrium conditions, reveals the existence of 
some underlying bistability or rather pseudo-bistability. In fact, from this observation, 
a procedure for constructing a chemical oscillator has been designed and successfully 
applied in theoretical models (Boissonade and De Kepper 1980) as well as in a n  
experimental context (De Kepper et al. 1981). A simplified recipe goes as follows: take 
an autocatalytic reaction; run it in a CSTR, and try to obtain a bistable system; next, 
find some ingredient that pushes the system to the left when in the upper branch 
(figure 24), and to the right when in the lower branch. If the various time scales fit nicely, 
you may obtain a relaxation oscillator. 

(11 (2) ( 3 )  

Saddle-loop bifurcation to a limit cycle. (1) Saddle point C and unstable focus U. (2) 
Saddle-loop and homoclinic orbit. (3) Saddle point C,  unstable focus U and stable limit 
cycle. The separatrices of the saddle point C have exchanged position during the 
bifurcation (points a and b). Notice that the local properties of singular points do not 
change during this global bifurcation. 

Figure 23. 

y ~ ~ ~ - ~ -  

- - _  - 

-- -- - _ -  
time X 

Figure 24. Relaxation oscillation and underlying pseudo-bistability. X is a slow variable, Y is a 
fast variable, rapidly adapting to X value. If X were fixed, a real bistability would be 
observed. 

3.1. Extended dejnition of bistability 
We shall now extend the definition of bistability to the existence of any two 

simultaneously stable regimes. We shall obtain in this way a number of new 
configurations which have been observed experimentally. 
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Non-equilibrium behaviour in chemical systems 29 

Suppose that one of the regimes is a stable limit cycle. A corresponding phase 
portrait in two dimensions can be easily obtained from figure 23 (3), if one adds a stable 
node on the lower left corner separatrix. In that case a stable node will coexist with a 
stable limit cycle, each of them having an attracting domain. Obviously, a bifurcation 
can occur on one of the branches, for instance a saddle-loop bifurcation as in the 
previous example, or a Hopf bifurcation as shown in figure 25 (a). In more complex 
situations, both branches may present such a bifurcation, corresponding to the 
coexistence of two distinct oscillations (figure 25 (b)). An experimental example was 
shown in figure 3. 

T State T 

\ 
( a )  

Figure 25. Extended definition of bistability. Hopf bifurcation can occur on the stable 
branches of a bistable system. (a) To the left of point H a steady state coexists with a limit 
cycle oscillation. (b) Two distinct limit cycles can coexist. This situation is referred to as 
birhythmicity. 

3.8. Composed oscillations 
We have already given an experimental example of this complex oscillating regime 

in which each period is composed of a mixing of two types of oscillations, one large and 
a variable number of small ones, in figure 2 (Alamgir and Epstein 1983). The 
geometrical representation of this phenomenon is given in figure 26. It is based on the 
same argument used in figure 24 to describe relaxation oscillations. In a three- 
dimensional phase space the trajectories lay on a folded two-dimensional sheet. This is 

Figure 26. Two schematic representations of composed oscillations in phase-space. 
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30 C .  Vidal and P .  Hanusse 

the ‘slow manifold’. The trajectories converge rapidly to this attracting subspace, then 
drift slowly on each fold of this sheet, jumping from one fold to the other. A projection 
in two dimensions of such a trajectory, determined experimentally, is shown in figure 27 
(De Kepper 1978). 

@ itat m 
I I I I 

2oo E (mv) 
7 50 to9 150 

Figure 27. Experimental example of phase-space trajectory of a composed oscillation (De 
Kepper 1978). This is the projection in two dimensions of a trajectory of the type shown in 
figure 26. In this experiment, the oscillating regime coexists with two stable steady states. 

3.9. Birhythmicity 
As already seen in section 3.7, a definition of bistability extended to any kind of 

stable regime (figure 25 (b)) can explain the possible coexistence of two different 
oscillating regimes for the same value of the control parameters. An experimental 
observation was presented in figure 4 (Alamgir and Epstein 1983). From what preceeds, 
a geometrical representation can be constructed straightforwardly. 

3.10. Quasiperiodicity 
We now go to an even more complex behaviour in which, strictly speaking, no 

period can be observed. This situation may appear very close to what we have seen 
.before. But the qualitative change that results from this lack of periodicity is crucial. 

Consider figure 26 (a), which describes composed oscillations. Suppose that the 
oscillating behaviour which exists on the upper fold, also occurs on the lower fold. 
Without too much effort, it is possible to realize that the resulting flow has the topology 
of a torus. If after going through one large loop the system returns exactly to the same 
place, as in figure 26, the behaviour is periodic. If not, it is quasiperiodic: there is no 
‘phase-lock’, or commensurability between the large loop duration and the small 
oscillation period. In experiments, it will be very difficult to distinguish between the two 
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cases, looking only at time series. Fourier transform analysis and phase space 
representation will be required to detect this toroidal structure (Argoul and Roux 
1985). 

3.1 1. Deterministic chaos 
Deterministic chaos is the most surprising dynamical behaviour that has been 

investigated during the last years. Chemical systems turned out to be an excellent field 
of experimentation for a phenomenon that remained for some time a purely 
mathematical subject. 

Consider again figure 26 (b) where an unstable focus lies on the upper sheet of the 
fold. Suppose that the reinjection to the upper sheet occurs close to this unstable focus, 
but in a slightly irregular position. The instability of the focus provides a mechanism for 
deviation amplification. The trajectories will spread over the upper sheet before falling 
down the edge of the fold, after a variable number of rotations. Suppose now that the 
trajectories gather again on the lower sheet as the result of a contracting dynamics. We 
might obtain a flow as depicted in figure 28. This very crude description allows us to 
realize that in three dimensions such a stretching, mixing, folding and contraction of 
flows is not in contradiction with deterministic dynamics. The resulting time series will 
look very irregular, although no stochasticity, in the physical sense of an unknown 
driving force, has to be included in the description. This very strange phenomenon 
deserves a more detailed discussion. It has become a field of investigation by itself in 
chemical dynamics, and specific methods have been designed to observe and 
characterize it. 

Any physical system whose temporal behaviour is described by a set of non-linear 
differential equations (or discrete mappings as well) may give rise to such a 
deterministic chaos. This very important conclusion was originally pointed out by 
Ruelle and Takens (1971), who thus completely renewed our knowledge and 
understanding of turbulence phenomena. Hydrodynamics was the first experimental 
field to be explored, though in principle many fields are concerned. Whereas Ruelle 

Figure 28. A qualitative picture of a chaotic flow that can be derived as a perturbation of the 
periodic trajectory of figure 26 (b). 
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32 C. Vidal and P.  Hanusse 

(1973) soon drew attention to chemistry, the first experimental evidence of chemical 
chaos only appeared in 1978-1979 (Rossler and Wegmann 1978, Hudson et af. 1979, 
Vidal et al. 1979, Sorenson 1979). Let us summarize how deterministic chaos exhibited 
by chemical systems: (i) looks like, (ii) is characterized by, and (iii) emerges from more 
familiar behaviours. 

We have already mentioned complex oscillations where ‘small’ and ‘large’ 
amplitude variations appear to be mixed in a random way, without any periodicity at 
least on laboratory time scales (figure 5 (a)). How can we be confident that the ‘dwarfed’ 
oscillations reflect the chemical dynamics rather than an imperfect experimentation (as 
believed at first)? 

A statistical argument is provided by the fact that several groups, working in 
different countries with different apparatus, have reported very similar observations. 
Moreover, dynamical regimes characterized by a noisy Fourier spectrum? (see 
figure 5 (b)) are obtained in the course of experiments which lead to perfectly periodic 
regimes (see figure 1 (b)) for the same set of experimental conditions except a nearby 
flow rate. It is striking to note that: 

(1) when occurring, the sequences of alternating periodic and chaotic regimes are 
reproducible, with a regular trend in an increase of the ‘noise’ level from one 
chaotic regime to the next (Vidal et al. 1982), 

(2) chaos is not always found, even when very complex periodic regimes are 
identified (Maselko and Swinney 1985), 

(3) typical routes leading from periodicity to chaos have been observed in full 
qualitative agreement with the theoretical predictions made for low- 
dimensional dynamical systems (see below). Randomness cannot be a source of 
such well-defined sequences of events. 

Another powerful method for studying dynamic regimes is to look at phase 
portraits. Ruelle and Takens (1971) made the breakthrough while introducing the 
concept of ‘strange attractor’ which is the core of our present understanding of chaos. 
Let us remind ourselves of the two main features of this highly non-intuitive 
mathematical object: 

(1) it has a ‘fractal’ structure (and dimension) consisting of an infinite set of sheets, 
generated by an infinite sequence of stretching and folding operations, 

(2) onto a strange attractor, trajectories starting from nearby points diverge 
exponentially fast (on the average), a property known as ‘sensitive dependence 
on initial conditions’. 

When dealing with experimental results, phase-space analysis must overcome a real 
difficulty. Only a single phase variable-say X ( t E  is usually recorded. However, it has 
been conjectured that the topological properties of the attractor in the true (unknown) 
phase-space would be preserved in image spaces involving as independent coordinates: 

either: X(t) ,  X ( t ) ,  X( t ) ,  . . . 
or: X(t ) ,  X(t+z) ,  X ( t +  22), . . . 

(Packard et al. 1980) 
z being an arbitrary time delay 
(Takens 1981) 

?The Fourier spectrum (or the power spectrum) displays how the power density P(f) 
(i.e. square root of the sum of the squares of the real and imaginary parts of the Fourier transform 
of a time series) depends on the frequency f: 
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Non-equilibrium behaviour in chemical systems 33 

Hence, it thus becomes possible to analyse phase portraits reconstructed from any 
single time series X(t ) .  

Figure 29 shows the result so obtained in a space ( X , X , X )  with a non-periodic 
regime of the BZ reaction. At the bottom of the plot, the clockwise trajectories may 
either go directly upwards, or else, enter the eddy where they make an undefined number 
of turns before leaving. Therefore one cannot predict how the distance between two 
points will evolve. This is exactly what sensitive dependence on initial conditions 
means. Following a method invented by PoincarC at the turn of this century, it is 
efficient to look at the intersection of the attractor with a well chosen surface.? 
Depending upon the topological nature of the attractor-limit cycle, T 2  torus, strange 
attractor-one will get a Poincart section consisting in a point, a closed curve, or a set 
of lines (one for each sheet) respectively. Figure 30 (a) presents a projection onto a plane 
(B(t + z), B(t)) of the attractor corresponding to another dynamical regime of the BZ 
reaction (Roux and Swinney 1981). The PoincarC section by a perpendicular plane 
(passing through the dashed line in figure 30 (a)) appears in figure 30 (b). It looks like a 
segment, slightly curved. There the fractal nature of the attractor remains completely 
invisible, the sheets being packed very close one to another thanks to a high rate of 
dissipation. Still, recording the coordinate x (along the segment of figure 30(b)) of 
successive intersection points yields a discrete sequence x(n) which is plotted as one- 
dimensional map x(n + 1) = f { ( x ( n ) }  in figure 30 (c). Clearly, this first return map points 
out the deterministic character of the dynamics. Indeed one gets a single-valued curve, 
so that the value of any x(n) determines unambiguously that of x(n + 1). Furthermore, 
the curve displays an extremum, thus fulfilling the theoretical requirement of a non- 
invertible map associated to chaos. In contrast, a stochastic process would have led to a 
set of points spread more or less all over the plane, since no relationship is to be 
expected between two successive intersections occurring at random. 

Chemical systems seem to be highly dissipative so that their dynamics should be 
largely understandable in terms of one-dimensional-map properties. Maps with a 
single extremum have been theoretically studied in great detail and a lot of predictions 
are available which, very often, do not depend on the exact shape of the mapping: in 
that case, the corresponding behaviour is said to be ‘universal’. For instance, any 1D- 
map having a quadratic extremum will give rise to a ‘period-doubling cascade’ by 
varying a bifurcation parameter. Here, an initial periodic regime loses its stability 
through a sub-harmonic bifurcation, thereby generating another periodic regime with 
approximately twice the period. This phenomenon repeats again and again, the period 
being doubled at each step. On the parameter axis, the points at which sub-harmonic 
bifurcation takes place rapidly accumulate. The asymptotic rate of convergence is 
governed by a ‘universal’ number 6 = 4.66920.. . ; finally, chaos sets in. Many such 
cascades have been reported over the past few years, including in chemistry. Because 
the control parameter used is the flow rate, only the first three period-doubling 
bifurcations have been observed with the BZ reaction (see figure 6; Simoyi et al. 1982). 

Another nice prediction, which even applies to non-quadratic extrema, deals with 
the so-called U(niversa1)-sequence. It states the order in which periodic windows 
appear along the bifurcation axis, beyond the first accumulation point. A periodic 

t In practice this method is applied in general to three-dimensional spaces, the surface often 
being merely a plane. Obvious reasons of convenience put these two restrictions at work in most 
cases, even though they are not at all required in principle. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
0
9
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



34 C. Vidal and P. Hanusse 

Figure 29. Phase-space portrait of a non-periodic regime of the BZ reaction (Roux et al. 1980). 
The whole attractor is represented in medallion, while the blow up shows the region where 
trajectories diverge. 

D
o
w
n
l
o
a
d
e
d
 
A
t
:
 
1
8
:
0
9
 
2
1
 
J
a
n
u
a
r
y
 
2
0
1
1



Non-equilibrium behaviour in chemical systems 35 

c r4 + - v 

m 
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, 
i 

Figure 30. Phase-space analysis of a non-periodic regime of the BZ reaction (Roux and 
Swinney 1981). (a) 2D phase-space portrait. (b) Poincart section of the three-dimensional 
attractor by a vertical plane passing through the dashed line in (a). (c) 1D-map constructed 
by plotting the successive coordinates x, along the line obtained in (b). 

window consists in a periodic P-cycle (P> l), followed by its own period-doubling 
cascade. The perfectly-defined hierarchy of these P-windows forms the U-sequence 
(Metropolis et al. 1973). No discrepancy between the observed order of occurrence- 
sometimes, however, difficult to establish-and the prediction of the U-sequence was 
noticed (Simoyi et al. 1982). 

Transition from periodicity to chaos may also occur via ‘intermittency’. This 
phenomenon was theoretically predicted by Pomeau and Manneville (1 980), once 
again analysing the general properties of 1D-maps. Intermittency consists of rather 
long periods of nearly periodic oscillations, interrupted from time to time by bursts of 
‘noise’. Three different types of bifurcation may generate such a behaviour. Type I 
intermittency results from a saddle-node bifurcation taking place when the mapping 
curve becomes tangent to the first bisectrix (see figure 31 (a)). Before this, the two 
intersection points stay apart. At tangency, these two points coalesce. Slightly beyond, 
a narrow channel is created between the first bisectrix and the mapping curve. The 
system spends a considerable amount of time in crossing this channel (see arrows) and 
develops nearly periodic oscillations during this whole period. When the iteration 
point leaves the map to the right and is then reinjected in the channel on the left, a burst 
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after 

before 

TlllE InN) 

xk+l 20 

X. 

Figure 31.  Type I intermittency (Pomeau et al. 1981). (a) Theoretical ID-map (Pomeau and 
Manneville 1980). (b) Time series record of the BZ reaction. (c) Next amplitude plot 
deduced from (b) and very similar to (a). 

of noise (not depicted by the map) occurs. In accordance with these theoretical 
predictions, figures 3 1 (b) and (c) display the experimental observations made on the BZ 
reaction by Pomeau et al. (198 1). It is worth noting that the agreement between theory 
and experiment goes beyond the qualitative view obvious in figure 3 1. 

Several other experimental data have been collected about the dynamics of the BZ 
system. However, these are less well understood and call for further research (Turner 
et al. 1981, Vidal and Rossi 1981, Vidal et al. 1982, Roux and Rossi 1984, Argoul and 
Roux 1985). 

Needless to say, many computer simulations have already been carried out. Several 
attempts using oversimplified models seeking for chaos have failed (Showalter et al. 
1978, Ganapathisubramanian and Noyes 1982, Schwartz 1984). Owing to the large 
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Non-equilibrium behaviour in chemical systems 37 

number of experimental data which fit theoretical predictions so nicely, these 
shortcomings do not really cast doubt on this field. Indeed 

(i) given a model, the dimension of the parameter (rate constants, concentrations, 
etc.) space is such that exploring a significant part of it would require a huge 
number of simulations; 

(ii) the BZ reaction has a very complex chemistry, as discussed before. Thus the 
relevance of any simplified model is always questionable; 

(iii) a seven-variable model, derived from the Oregonator, does exist already which 
exhibits chaotic regimes. Moreover, it leads to phase portraits and 1D-maps 
resembling that of figure 30 (Ringland and Turner 1984) and provides an 
alternating periodic-chaotic sequence similar to experimental findings 
(Turner et al. 1981). No doubt this model is as relevant as any other one. 

3.12. Analogy with phase transitions 
At this point, it is worth noting the very fruitful analogy that can be drawn between 

bifurcations in dynamical systems and phase transitions. 
Bistability has all the qualitative properties of first-order transitions. We shall see 

later that not only static but also dynamical properties find their equivalent. For 
instance, the transition from one state to the other can occur by a nucleation process, 
and there exists a critical point (see figure 18). 

The Hopf bifurcation, on the other hand, provides an equivalent of a second-order 
transition (figure 22), in which the amplitude of the limit cycle is the order parameter, 
null before the transition, increasing after. We even find a classical exponent of one-half 
in that case. 

Similarly, chaos presents various regularity and even universality properties, 
including scaling properties with universal exponents, and renormalization concepts 
have been fruitfully applied to characterize the structure of strange attractors. 

One should not be too much surprised to find a rather close, at least qualitative or 
topological, analogy between processes of change, no matter how we call them: 
transitions, bifurcations or even catastrophes. 

3.13. General mathematical aspects 
The modelling of the dynamical behaviours that we have described previously relies 

entirely on classical chemical kinetics, in the sense that no new ingredient is required, 
except for the fact that the system is kept far from equilibrium by some external 
constraint, typically by a feed of reactants as in a CSTR. We are thus left with a set of 
differential equations derived from mass-action kinetics, in which the external or 
control parameters are the rate constants, the flow rate in a CSTR, and the 
concentrations of inputs: 

d X ,  . 
-=Xi=G,(X,K),  i = l ,  ..., N 
d t  

where the X i  are the concentrations of the N internal species, and K denotes a vector of 
parameters. The first question is: how many steady states are there, and at what 
concentrations? The steady states X s  are simply defined by: 

Gi(XS ,  K )  = 0, Vi 
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a x i  
1 3 ’  ax, A .  .=- 

There is no general and practical answer to this question. Notice that at equilibrium 
this question does not arise since, due to the property of detailed balance, there is only 
one equilibrium state. We keep the term ‘steady state’ as the general one. 

Considering one particular steady state, the second question that one has to face is: 
is this steady state stable? 

Linear stability analysis can, in principle, give an adequate answer. This is achieved 
by examining the eigenvalues of the matrix: 

, i , j= l ,  ..., N 
x 5  

where the derivatives are evaluated at steady state. In practical situations, this is not a 
simple task. 

Finally, we shall have to analyse the behaviour of the system when instability 
occurs. This requires us to take into account non-linear terms, a very complex and 
tedious task for which no universal procedure is available. One usually ends up 
performing computer simulations, without being able to avoid many trial-and-error 
steps, due to the lack of any rational methodology to perform such a modelling project. 

There is still a lot to be done in designing efficient and practical analytical and 
computer tools to help the chemist in his modelling effort. Nevertheless, we shall sketch 
some of the results that contribute to this project. 

A number of studies, not only in the field of chemical kinetics, have tried to answer 
the question of linear stability: for instance, the theory of ‘Qualitative Stability of 
Matrices’ (Quirk and Ruppert 1965). Other works have taken into account the specific 
dynamical properties of chemical kinetics, namely mass-action law, that put a set of 
constraints on the general mathematical problem exposed above. For instance, all the 
diagonal terms of matrix A are non-positive as long as the reaction scheme involves 
only mono and bi-molecular steps (Hanusse 1972,1973). This property rules out the 
existence of limit cycle oscillations around an unstable steady state in models with only 
two intermediate species. It is important to realize that most of the exotic behaviours 
that we are considering result from the interaction of a small number of variables. 
Mathematically we would say that they represent low-dimensional dynamical 
behaviours. Unfortunately, in real situations, we have to deal with many more 
variables, i.e. species, than we can practically handle. This is why the study of formal 
models (table 1) was so important to assess the chemical pertinence of such exotic 
mathematical objects. 

Other interesting results have been obtained in trying to classify the types of 
instability that can result from chemical processes. It has been possible to show (Tyson 
1975) that all destabilizing processes in chemical reaction networks can be classified as: 

direct autocatalysis 
indirect autocatalysis (positive feedback loop) 
end-product inhibition (negative feedback loop) 

As an example of these notions, let us consider the following reaction step: 

A +2X-+2X 

Obviously it belongs to the first class and, in term of mass balance, it could be written 
as: act. 

0 
A+X-+B 
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which indicates that X activates its own production. But in the same class, one also has 
steps like: 

inh. 

A+X+$ 
rt 

where X inhibits its own degradation. 
Of course such criteria will only tell us whether a particular reaction scheme is able 

to produce an amount of instability in its steady state. It will never tell for which values 
that can be achieved, if it is physically possible, and what behaviour will develop 
therefrom. 

A global ‘chemical network’ type of approach has been used by several authors, 
leading, for instance, the ‘Zero Deficiency Theorem’ (Feinberg and Horn 1974), which 
defines a large class of chemical networks that cannot be unstable, under any 
circumstances. Similarly, Clarke (1980) has designed a ‘Stoichiometric Network 
Analysis’ which still appears as a complex approach to a chemist, but seems to be 
amenable to practical applications (Clarke 1984). 

Finally, we must say a word about the development of still more effective practical 
methods, which can be used by ‘ordinary’ chemists, through a computer simulation 
system. They try to incorporate as much as possible of the mathematical tools, still 
being constructed, to allow a more rigorous and systematic analysis of the dynamical 
behaviours which can arise in conditions far from equilibrium. A first step in this 
direction is provided by computer simulation systems which present a chemist-friendly 
interface, making possible a quick, versatile and safe design and simulation of chemical 
models (Gottwald 1979, Hanusse and Richetti 1985). They can offer various specific 
tools, such as steady-state calculation and linear stability analysis, reaction step-rates 
monitoring, data-file management and display, etc. But, although they do help the 
chemist in his modelling task, they are essentially simulation tools rather than real 
Computer Aided Modelling Systems. There is still a need for what we could call an 
‘Expert System in Chemical Dynamics’, through which the mathematical expertise in 
dynamical systems and bifurcation theory could be applied with more intelligence, and 
could be made available to the chemists in their own language. In this way might be 
achieved a more realistic modelling of experimental systems, the pertinence of which 
could rely on a rational methodology. 

So far, we have dealt only with deterministic dynamics as derived from a description 
in terms of differential equations. We should mention here, without going into much 
detail, that stochastic dynamics has also been considered, mainly in theoretical works, 
although a few experimental investigations have been performed to study the role of 
fluctuations, internal or external, in particular near instability points. This stochasticity 
has nothing to do with chaos, although the term has sometimes been used by 
theoreticians. Chaos is a non-periodic deterministic behaviour. Here we refer to non- 
deterministic dynamics that result mainly from the molecular nature of chemical 
processes, whose microscopic dynamics are not described in detail but manifest 
themselves either through fluctuating control parameters-in that case one speaks of 
external fluctuations-or through a stochastic description, for instance in terms of 
birth and death processes (Gardiner 1983). In this case one speaks of internal 
fluctuations, and the. set of differential equations is replaced by a Master Equation 
describing the evolution of the probability density P ( X ,  t )  for having a composition X 
(particle numbers) at time t. External fluctuations are usually taken into account by 
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adding a fluctuating force to the r.h.s. of the deterministic differential equations (that 
can also be done for internal fluctuations with an appropriate term) leading to a 
stochastic differential equation (Horsthemke and Lefever 1984). 

It is particularly important to understand the role of fluctuations near instability 
points, where several possible paths of evolution are usually offered to the system. 
Besides, the analogy between bifurcations and phase transitions appear to be deeper 
when one realizes that fluctuations could behave in a rather universal way. Computer 
simulations have shown that, for instance in a bistable system, a nucleation process can 
be observed (Hanusse 1977, Hanusse and Blanche 198 1 a, b, Boissonade 1982), and that 
some kind of critical behaviour can be observed near the triple point (Hanusse 1981). 

Unfortunately very little has been done experimentally in this field. No way has 
been found to observe directly fluctuations, and experiments on external noise are rare 
and rather dubious. It may be that the study of spatial structures will provide a grip, 
although indirect, on some aspects of the role of fluctuations in dissipative chemical 
systems. 

4. Spatial and spatio-temporal behaviours 
4.1. Introduction 

Since the experiment performed by BCnard at the turn of this century, convection 
has been well known as a source of spatial organization in fluids. One expects, however, 
according to an analysis first developed by Turing (1952), some chemical reactions to be 
able to give rise to spatial ordering. The highly non-linear character of their kinetics 
makes chemical oscillators good candidates for providing direct experimental 
evidence. As a matter of fact, many patterns have been observed in BZ and BZ-like 
media for more than fifteen years. At the beginning several of them were poorly 
understood, while a few were clearly misinterpreted. To prevent errors, it seems 
appropriate to set up a classification, even though the vocabulary has not yet reached 
its final stage in this domain. 

Until now, two different types of spatial behaviour have been experimentally 
identified: 

(i) reaction-convection patterns (to which presumably belong the so-called 
‘mosaic structures’), 

(ii) reactiondiffusion phenomena known as chemical waves (‘trigger waves’ or 
‘auto-waves’). 

On the one hand, it must be emphasized that the oscillatory character of a chemical 
reaction is not a requirement for the appearance of such behaviour in a reacting 
medium. Several examples will be given in this paper. On the other hand, it should be 
realized that spreading an oscillating medium onto a surface may give rise to other 
time-space dependent phenomena. Nonetheless, the corresponding ‘waves’ are of a 
very peculiar kind. Originating from a spatial desynchronization (in phase or 
frequency) of the oscillation, their ‘propagation’ does not involve diffusion. Thus they 
have properties drastically different from those of ordinary (i.e. diffusion-dependent) 
waves. We find it convenient to make hereafter a clear distinction, by calling them 
‘pseudo-waves’. 

Before going into more detail let us add that yet another type of ‘wave’ was 
theoretically predicted by Ortoleva and Ross (1973) and by Hagan (1981). However, we 
will not discuss this further, because no experimental observation has been reported so 
far. 
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Though spatial structures and waves have been observed in lD(imensional), 2D 
(Petri dish), or 3D (tube) devices, most results come from experiments performed on 
shallow layers. Accordingly, attention is mainly paid to this case in the remainder of the 
paper. Let us simply recall that three-dimensional scroll waves raise both fascinating 
topological questions (Winfree and Strogptz 1983) and serious experimental problems 
(see plate 5; Welsh et al. 1983). 

4.2. Reaction-convection patterns 
Structures of this type may occur in a reacting medium, whether oscillatory or not. 

Typical examples are provided by experiments involving a monotonic reaction taking 
place at an interface. Most often, the medium is kept out of equilibrium by continuous 
light irradiation (Mockel 1977, Kagan et al. 1982, Gimenez and Micheau 1983, Avnir 
et al. 1983) which, moreover, initiates a photochemical reaction (plate 1). Sometimes, 
also, the liquid layer is merely put into contact with a suitable vapour (Avnir and Kagan 
1983). In all these cases, the reaction is monotonic and never exhibits an oscillatory 
character. When a light beam is used, depending on the (ir)reversible nature of the 
photochemical process, the structure either disappears (photochromic compound) or 
remains (chromogenic compound) when the light is switched off. 

The most striking property of these structures is that they are ‘unmoving’ patterns: 
they grow, exist and, eventually, vanish ‘at the same place’ (at least on usual 
experimental time scales). This fact illustrates a clear difference from the waves, whose 
front propagates regularly through the layer at a speed of several millimetres per 
minute. 

Qualitative studies of such stationary patterns have been carried out on photo- 
chemical systems. There are many systems of this kind. A few were discovered by 
Mockel (1977), and many others four years later. Chemical compositions appear in 
Avnir et al. (1983), and Gimenez and Micheau (1983). The way in which a pattern 
emerges in the layer has definitely been elucidated in several (but not ail) cases by 
Micheau et al. (1983). Using the schlieren photographic technique, these authors have 
shown that convection occurs and leads to what they call ‘pre-patterns’, even if a 
reaction does not take place. More precisely, a slow convection motion is induced by a 
Rayleigh-BCnard instability, an adverse density gradient being produced by evapora- 
tive cooling of the solvent. If the photochemical reaction then sets in, it simply reveals to 
the eye these pre-existing convection patterns, the organic dye being trapped in regions 
having a downward velocity field. It is likely that some structures observed by Avnir et 
al. (1983) can be interpreted in a very similar way. Indeed, in this problem one has to 
take into account two different types of instability, each of them having two possible 
origins: 

(i) the Rayleigh-BCnard instability, induced by an adverse density gradient 
resulting from evaporative cooling of the solvent and/or an endothermic 
reaction at the interface, 

(ii) the Marangoni instability, inhomogeneities in surface tension arising from 
differences in temperature and/or chemical composition. 

Therefore, one can expect an extremely complicated interplay between all these 
phenomena. This provides us with a rather simple qualitative explanation of the large 
variety of forms which have been observed in various reacting media. However, we are 
thus faced with a serious experimental challenge: namely, to set apart the different 
contributions whose relative importance certainly changes from one case to the other. 
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It is worth noting that certain observations reported by Avnir and Kagan (1984) 
seem to proceed through another type of mechanism. By ‘sandwiching’ between two 
plates a solution, of ferricyanide for instance, evaporative cooling and Marangoni-type 
effects are prevented. Nevertheless structures of Turnbull’s blue are still formed by 
illuminating the layer. According to these authors the photoreduction starts over the 
entire surface at the upper part of the layer, prior to the onset of convection, but the 
mechanism by which the structure is formed remains so far mysterious. 

Oscillatory as well as excitable BZ or BZ-like media are also known to yield very 
similar unmoving patterns, as reported by Zhabotinsky and Zaikin (1973), Showalter 
(1980) and Orban (1980). Named for a while ‘mosaic structures’, they too are suspected 
to be reactionxonvection patterns. The present guess is that, due to a reaction with 
oxygen in the air, inhomogeneities in chemical composition develop at the surface of 
the liquid. In this way a Marangoni effect triggers convection which is supplied, later 
on, by Archimedes’ force. Two qualitative facts support this point of view: 

(i) mosaic structures develop only in layers sufficiently deep (say 1.5 mm or more), 
(ii) they are unobserved when the upper surface is not free, but put into contact 

with a plate. 
Direct experimental characterization of convection motions is still lacking, once 

more, to convert this assumption into a firmly established result. Furthermore, recent 
calculations performed on the Oregonator show that they might be reaction-diffusion 
patterns as well (Becker and Field 1985). 

4.3. Pseudo-waves 
As we noticed before, a pseudo-wave? originates from spreading a time-periodic 

reaction whose oscillation phase and/or period is space-dependent. This will produce 
an apparent propagation throughout the reacting medium whereas nothing actually 
moves. In other words, pseudo-waves are basically an optical illusion: the chemical 
analogue of those electric signs whose lights are successively switched on and off. Their 
velocity is inversely proportional to the gradient producing them and, thus, becomes 
infinite when this gradient vanishes. The main characteristic of such waves is that 
diffusion is not involved at all in their ‘propagation’. Accordingly, ‘pure’ pseudo-waves 
can never be observed in a continuous medium because diffusion sets in as soon as 
concentration gradients appear. However, provided the time scales of diffusion and 
apparent propagation are sufficiently different, so that diffusion remains always 
negligible,$ the concept of pseudo-waves is really useful in understanding the two 
following salient features: 

(1) a high propagation velocity (with respect to that of diffusion) having no upper 
limit, 

(2) the crossing of impermeable barriers, because diffusion plays no role in the 
phase propagation. 

? Here, we will adopt a single term-pseudo-wave-whereas at the beginning a distinction 
was made between kinematic waves (Kopell and Howard 1973 a) associated to a period (or 
frequency) gradient and pseudo-waves (Winfree 1972) due to a phase gradient. This distinction is 
rather academic and it seems more appropriate to use only two ‘flags’, one for reaction4iffusion 
phenomena (‘true’ waves) and a second for diffusion-free propagation, whatever the nature 
(phase and/or frequency) of the gradient. 

2 The same kind of approximation is made for reactionxonvection patterns: diffusion and 
convection time scales are assumed to be such that no significant coupling takes place. 
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These pseudo-waves provide us with nice pictures or films (see plate 4 section 2.2.2; 
Sadoun-Goupil et al. 1982), but they have very little-if any-scientific interest. We 
mention them only to emphasize that propagation-like phenomena, which are not 
diffusion-dependent, may occur in an oscillating medium. These should not be 
mistaken for chemical waves, as they were sometimes at the very beginning of research 
in this area (Busse 1969). 

4.4. Chemical waves 
‘Chemical wave’ must be hereafter understood as having the following very precise 

meaning: a propagation phenomenon due to coupling between diffusion and chemical 
reaction, and nothing else. There is nowadays general agreement that certain structures 
exhibited by either an oscillating reaction, an excitable medium, or even a bistable one, 
belong to this category. Experimental as well as theoretical arguments support this 
point of view: 

(i) no experimental evidence that convection, heat transport, or surface tension 

(ii) analytical calculations and computer simulations based on the classical 
play a significant role, at any stage, is known; 

reaction-diffusion equation: 
ax 

(2) -= d t  F(X)  + DAX 

X concentration vector 
F ( X )  reaction term 
DAX diffusion term according to Fick‘s law 
D diffusion coefficient matrix 

although carried out on simple models yield results which agree qualitatively 
and, sometimes, semi-quantitatively, with experimental data. 

As mentioned above, many data come from 2D-experiments performed with the BZ 
reaction. Expanding rings of chemical activity spontaneously develop in BZ reagent 
thin layers at rest. They propagate outwards, starting from a point named ‘centre’, and 
form a pattern which looks like a target (plate 3). These target patterns are easily seen in 
visible light, using the redox ferroin/ferriin catalyst. Commonly, the medium stays in 
the red reduced state (Fez+), whereas a ring is a blue zone of oxidation (Fe3+). At low 
malonic acid concentrations, the opposite (red-on-blue) pattern can be observed 
(Smoes 1980). 

Breaking a circular wavefront developing in an excitable medium may give rise to a 
pair of rotating waves (Winfree 1972, Zhabotinsky and Zaikin 1973): the two free ends 
created wind up in opposite directions (clockwise and counter-clockwise), forming a 
pair of spirals. A more elaborate recipe (Agladze and Krinsky 1982) enables one to 
produce multi-armed rather than single-armed spirals (Plate 2). However, it must be 
emphasized that spirals do not emerge in a quiescent layer until a previously existing 
wavefront has been perturbed. 

Circular waves, leading to disc and target patterns, also appear spontaneously in 
chlorite-iodine-malonic acid solutions (De Kepper et aZ. 1982). Though not really 
surprising, this experimental fact demonstrates the need for a general interpretation of 
this behaviour, which must not depend too much on the detailed chemical mechanism. 

Excitable and bistable media are well fitted for initiating single waves, for instance 
by applying a suitable voltage between two electrodes. Once triggered, the wave 
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propagates autonomously. One thus gets either a front in a bistable system (there is a 
switch from one state ahead of the front, to the other behind it), or a pulse in an excitable 
one (ahead and behind the pulse, the system is-almost-in the same state). Both types 
have been thoroughly investigated in the case of the iodate-arsenious acid reaction? 
(Hanna et at. 1982, Rastogi ef  al. 1983). 

The propagation mechanism of all these chemical waves can be qualitatively 
depicted in the framework of a reaction-diffusion process as follows. A wavefront is a 
narrow area where steep concentration gradients of several species exist. It is the 
diffusion of certain species across their own gradient which triggers the reaction ahead 
of the front. Accordingly, when two opposite wavefronts collide, they must annihilate 
one another,: as must the corresponding gradients. As a matter of fact, one observes 
that such an annihilation does always occur as expected (see examples in plate 3). 
Furthermore, assuming the triggering species to be ions, one predicts that propagation 
will be sensitive to an external electric field applied in the direction of wave motion. 
Recent experimental data confirm this point of view. A negative electric field (i.e. whose 
direction is opposite to that of wave propagation) accelerates the waves up to five times 
for E = 40 V cm- l; whereas a positive field slows them. For positive electric fields 
higher than 10 V cm- ' a splitting of the wave is even induced, thereby initiating new 
wave@) moving in the reverse direction (Sevcikova and Marek 1983). 

If we now look to more quantitative features, it is noteworthy that rather few data 
are available, except on wave velocities. These and their dependence on concentrations 
and temperature in BZ media are gathered in table 4. The analysis of wave profiles had 
been undertaken only very recently (Wood and Ross 1985). No experimental 
measurement to, at least, figure concentration gradient@) in a wavefront has been 

Table 4. Wave velocity dependence on (a) concentrations and (b) temperature for the BZ reaction measured 
in thin layers (except 1- tubular reactor). 

(4 
T U b 

(K) (mm min ~ ') (mm min - M - I) References 

W.V. = a  + b[H,SO,] 'Iz [BrO J '/' 

~~ 

298 
298 
29 1 
298 
298 

-0.832 
- 1.957 
- 3.2 
-0.83 
-3.431- 

27.87 
25.86 Showalter (198 1) 
28.3 Wood and Ross (1985) 
27.9 Kuhnert et al. (1985) 
58.34f Sevcikova and Marek (1983) 

Field and Noyes (1974 a) 

W.V. =f(  T )  
(mm min- ') 

285-298 5 x  106exp(-41W/~) Wood and Ross (1985) 
284-3 18 9 x 106exp(-4200/T) Kuhnert et at. (1985) 
288-303 -58.55f0.21 T t  Sevcikova and Marek (1983) 

(4 
Range (K) 

t Here the front converts the solution of initial reactants to the equilibrium composition. 
$Therefore a pulse travelling in an excitable medium has nothing to do with a soliton, even 

though no dispersion is detected (Wood and Ross 1985). 
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reported until now. The lack of such significant information points out how far the 
experimental study of chemical waves still remains incomplete. Finally, Muller et al. 
(1985) have shown very recently that the diameter of the core of a single-armed spiral 
(i.e. the central zone where the variations of ferroin concentration are tenfold lower 
than outside) does not exceed 30pm. 

4.5. Modelling problems 
The coupling between chemical and hydrodynamic processes raises very difficult 

theoretical problems. Extensive studies are carried out in the gas phase, because 
combustion and flame propagation have such great importance. Comparatively, much 
less consideration is paid to what happens in liquids. Anyway, no attempt has been 
made so far to reach a quantitative description of the stationary reaction-convection 
patterns recalled in section 4.2. Pseudo-waves do not deserve any special analysis, since 
they are formally the D+O limit of a wave. Therefore, the question readily reduces to 
that of chemical waves. 

Still, the challenge remains to account for single waves, wave trains and rotating 
waves propagating either in bistable, excitable or oscillating media. Beyond the general 
form of equation (2), both the chemistry and the boundary conditions may be chosen at 
will, of course. As a natural consequence, many different models have been studied 
analytically and/or numerically, under many different conditions. They have in 
common a limited number of free species (three at most) and a diagonal diffusion 
coefficient matrix (which sometimes reduces to a single term). For a survey and 
comments, the reader is referred to Fife (B 1979) and Vidal and Pacault (R 1982). In 
short, whatever the medium’s characteristics, there is finally no major problem to 
design a model and to select conditions such that a wave, a target pattern, a spiral 
(Archimedean or logarithmic) will eventually result. More interesting is the fact that 
certain models enable us to get the proof that these solutions are stable and, thus, quite 
observable. Postponing to the next section the general mathematical background, let 
us present here two models which bring a deeper insight to the physical nature of target 
patterns. 

The first relies on a fully determinstic approach, designed by Tyson and Fife (1980) 
to meet the conditions encountered in the ‘Z’ reagent (Winfree 1972); that is, 
excitability. Worthy of mention is the fact that this model provides results in good 
agreement with experimental data-in particular wave velocities-on both rings 
(Tyson and Manoranjan 1984) and spirals (Fife 1984). The basic ingredients are: 

(i) a set of two dimensionless differential equations, derived from the Oregonator 
suitably reduced and scaled, whose variables X and 2 are respectively 
proportional to HBrO, and Fe3+ (ferriin). Only the diffusion of HBrO, is 
considered for the sake of simplicity; and 

(ii) the existence, at the centre of a target, of an heterogeneity, i.e. a ‘catalytic’ 
particle (dust, scratch, etc.) which locally modifies the kinetics. 

As seen in figure 32, which displays the null clines in the phase plane ( Z , X ) ,  the 
system is in a stable steady state (point A), but excitable: a small deviation from A to the 
right will drive the system along the large excursion BCDA. Moreover, the catalytic 
particle is assumed to shift the kinetics slightly in such a way that, right at the centre, the 
steady state is no longer stable and the reaction oscillates. Thus the centre periodically 
induces a perturbation in its neighbourhood, by locally increasing HBrO, con- 
centration. A wavefront of HBrO, autocatalytic production is triggered (line AB in 
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X -  

Figure 32. Phase-plane portrait of Tyson’s modelling of waves in excitable BZ media (Tyson 
and Manoranjan 1984). 

figure 32). Between B and C the colour of the dye switches from red to blue. Then there 
is a wave of HBrO, destruction (line CD) corresponding to the back front of the pulse. 
The system slowly goes back from D to A, while the red colour is restored. In the 
medium, each oscillation of the centre gives birth to a blue annulus of oxidation which 
propagates outwardly in a red medium. Thanks to a suitable modification of the 
constants, one can easily explain in a similar way the red-on-blue patterns observed at 
low malonic acid concentration. This time, of course, the first wavefront corresponds to 
HBrO, destruction, whereas the pulse ends by HBrO, production. Beyond this 
qualitative picture, the model predicts values of wave velocities in fairly good 
agreement with the experimental findings. This, in turn, gives additional support to the 
Oregonator itself. 

On the one hand, wave propagation in an excitable medium is finely described by 
this model but, on the other, the hypothesis about catalytic particles can hardly be 
falsified. Now there are several other models showing that heterogeneity is not at all 
necessary to account for target patterns. Furthermore it seems experimentally 
established that ‘homogeneous’ centres could exist, at least in oscillating media (Zaikin 
and Kawczynski 1977). Walgraef et al. (1983) have proposed an alternative explanation 
of wave emission in two-dimensional oscillating systems which does not involve any 
extra singularity. Their approach relies on a stochastic analysis of the problem, taking 
into account phase fluctuations of the chemical oscillation. According to their 
theoretical calculations it turns out that, beyond an instability threshold, a fluctuation 
is able to create a centre from which waves are radiated periodically. The main point is 
that a centre is now a direct product of oscillations and, consequently, target patterns 
and oscillatory behaviour are no longer independent: several relationships exist 
between their properties. Using the Brusselator (table 1) and assuming local 
fluctuations to be ‘Gaussian white noise’ distributed, Walgraef et al. (1983) have derived 
some of them. Figure 33 shows, for instance, how the fraction of centres is expected to 
depend on the wave number of emitted waves, and how the number of centres should 
vary with the amplitude of oscillation. 

In the framework of this stochastic approach, and whatever the model, statistical 
correlations must be observed as soon as centres result from a fluctuation-nucleation 
mechanism. On the contrary, heterogeneities would give rise, in principle, to complete 
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Figure 33. Stochastic predictions about target patterns in two-dimensional oscillating systems 
.(Walgraef et al. 1983). (a) Fraction of centres versus wave-number. (b) Total number of 
centres versus the limit cycle amplitude R,. 
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randomness. Reliable experimental observations of statistical properties have not been 
realized so far. The task is yet a real challenge. Of course, many data have to be collected 
to get a statistically significant sample. But the essential problem to be overcome is to 
lower as much as possible the influence of (otherwise unobservable) external sources of 
centres: ‘catalytic’ particles and fluctuations are not mutually exclusive. 

4.6. General mathematical aspects 
Though the experimental tools available at the present time only permit 

observation of transient evolutions, the theoretical question which is addressed is that 
of asymptotic solutions of equation (2). More specifically, we are interested in the 
existence and stability of these solutions. However, because (2) is a partial differential 
equation,? little can be done and there is no general answer to these two questions. One 
can only recognize different types of solution, which may exist, especially the familiar 
example already encountered: 

(i) space-independent time-periodic solutions (i.e. homogeneous oscillations), 
(ii)  space-dependent time-independent (i.e. stationary) solutions, 

(iii) travelling waves (pulses, wave fronts, wave trains), 
(iv) rotating waves (spirals, scrolls). 1 
The initial and boundary conditions play a great role, as also does the Euclidian 

dimension of the system. In this context, one easily understands how difficult it is to 
carry out detailed studies without specifying particular conditions, especially about the 
reaction kinetics. As a consequence, one is quite naturally led to perform numerical 
simulations, despite the lack of generality of a study devoted to a particular model. 
Among many others, let us mention the Brusselator (Herschkowitz-Kaufman 1975) 
and the Oregonator (Reusser and Field 1979, Becker and Field 1985) which, in one- 
dimensional space, exhibit stationary structures and waves. In two spatial dimensions, 
expanding rings and spirals have been numerically obtained with several different 
models (e.g. Gul’ko and Petrov 1972, Kuramoto and Yarnada 1975,1976), while the 
Brusselator yields rotating waves too (Erneux and Herschkowitz-Kaufman 1977). 
Apart from such ‘classical’ reaction-diffusion simulations, the cellular automaton 
designed by Greenberg and Hastings (1978) also deserves to be noticed although it does 
not rely on equation (2): this two-dimensional ‘game of life’ produces spirals and 
circular waves. 

Whatever their own interest, all these computer simulations leave unanswered the 
question of the general conditions required to get a solution of a given type and to make 
it stable. One can hope to learn something about this from analytical calculations, 
provided they are not devoted to very particular cases. Passing over many studies 
dealing with specific models, we shall rather focus our attention on more general 
approaches yet available. To get, say, ‘universal’ results, one must obviously reduce as 
far as possible the set of preliminary hypotheses. In particular, the chemical mechanism 
should remain largely unspecified. This is the reason why it is necessary to assign to the 
reaction terms F ( X )  nothing more than a ‘qualitative’ feature (e.g. time-periodic, near a 
Hopf bifurcation, excitable, etc.) without going into further details. 

t Of course, equation (1) is derived from equation (2) by eliminating all spatial derivatives. 
Accordingly asymptotic solutions of the ‘kinetic’ set (1) are also (space-independent) solutions of 
(2). However their stability with respect to inhomogeneous perturbations is no longer ensured. 

$According to Winfree (1973) a scroll is a spiral projected in three dimensions either by 
translation, or by revolution around a distant axis, thereby forming a ‘scroll ring’. 
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In this framework, various theoretical analyses have been reported to account for 
target patterns and spirals developing in a two-dimensional medium of infinite extent. 
Dealing with target patterns a crucial assumption is that of an heterogeneity at the 
centre. In a ‘smoothly’ oscillating (i.e. not relaxational) medium, Ortoleva and Ross 
(1973) were the first to predict the existence of ‘phase waves’ leading to target patterns 
whose size expands proportionally to the square root of time. More recently Hagan 
(1981) has derived a similar, but more rigorous analysis.? In both cases a third term is 
added to equation (2) to describe the influence of a local heterogeneity. However, as we 
have already recalled, a singularity is not at ail a prerequisite: homogeneous-centre 
theories are available as well (Bose et al. 1980, Kopell and Howard 1981). Worthy of 
mention is a particular form of equation (2), suggested by Kopell and Howard (1973 b), 
the so-called A-u systems: 

time-periodic function (limit cycle) 

This fairly general two-variable equation, although restricted to oscillatory media, 
enables us to derive a rigorous proof of several results. Thus, circular waves are actually 
stable solutions of it. Various rotating spirals also exist for certain A-2-w systems, but 
their stability is not yet firmly established (Greenberg 1980,1981). Enlarging such an 
approach to an n-variable system undergoing a Hopf bifurcation, Hagan (1982) has 
shown that one-armed spiral waves are probably stable, whereas multi-armed ones are 
unstable. 

Finally, Winfree and Strogatz (1 983) have recently undertaken a geometrical 
analysis of scroll waves in excitable media. Using only topological arguments, they seek 
for the limited set of spatial arrangements compatible with a reaction-diffusion 
process. Situations as compricated as twisted and/or knotted scroll rings, even 
mutually-linked by pair, are investigated. This is the first and very qualitative attempt 
to explore the problem of three-dimensional wave anatomy, at least in this chemical 
context. 

The Master Equation approach mentioned earlier has been used to study some 
reaction-diffusion systems in the presence of fluctuations. A number of qualitative 
effects have been detected in one-dimensional systems, such as the bimodal probability 
distribution in a bistable system and the associated nucleation process due to the 
coupling with diffusion, or the effect of Hopf bifurcations, which may change from 
supercritical to subcritical due to the mean field effect of local fluctuations (Hanusse 

Stochastic analysis of reaction4iffusion processes in two-dimensional space is still 
at its beginning. In the previous section we recalled the theory of target patterns 
developed by Walgraef et al. (1983). In the same paper, the probability of vortex-like 
phase fluctuations-which would result in rotating spirals-is shown to be vanishingly 
small. Therefore, spirals are not expected to form spontaneously and, unless initiated, 
should not be observed. This is as yet the only available analytical result. Numerical 
simulations involving Monte Carlo methods are also rather few. Specific algorithms 

1977). 

An experimental observation of target patterns exhibiting the predicted properties is still 
lacking, presumably because chemical oscillations are mostly of relaxation type. 
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have been designed to improve these computer-time consuming approaches. The two- 
dimensional X 3  Schlogl model (table 1) has been investigated as an example of non- 
equilibrium phase transition leading to critical behaviour (Hanusse 198 1). A similar 
nucleation process has also been observed using a molecular dynamics technique 
(Boissonade 1982). These few studies have remained essentially qualitative, mainly 
because no analytical treatment could be carried far enough to define some guidelines, 
direction of search, or specific assumption to be checked quantitatively; secondly 
because no experimental access to these phenomena has been discovered. It may well 
be that the experimental investigation of the random aspects of spatial structures will 
give some handle to the effect of fluctuations near bifurcation points. 

5. Conclusion 
After fifteen years of steady developments, the achievements of the large variety of 

studies on non-equilibrium chemical dynamics and related fields can be measured and 
appreciated as a remarkable contribution to the universality of knowledge. 

Looking from a distance, we could summarize up the concerns of these studies by 
the word ‘morphogenesis’, i.e. creation of shape and structure from the uniform and 
homogeneous. One might point out that others have tackled this very problem even 
more explicitly, biologists as well as mathematicians. In fact, morphogenesis, in the 
broadest sense, is probably one of the central paradigms of the last decades. It is of 
course no surprise that such a convergence of interests has occurred, which simply 
confirms its universality. But, as it turns out, chemistry appeared to be at a good level, 
between the complex reality of living systems and the reducing abstractions of 
mathematical descriptions, to allow a direct investigation of the universality of 
behaviours itself. 

Shapes are change and rhythm, evolution and structure. We have seen the analogy 
between the changes in phase transitions and those in bifurcations. The analogy works 
for deterministic as well as for stochastic aspects. Fluctuations, as a source of evolution 
which does not exclude determinism, appear to play an important role, although 
localized at some ‘turning points’. On the contrary, we have learned that determinism 
does not necessarily imply predictibility, as in chaos. Here, from the complete 
knowledge of a trajectory, nothing can be inferred, as we are used to do, concerning the 
future of a close, no matter how close, but distinct trajectory. 

One realizes that the experimental modelling of such complex systems and 
behaviours, yet simple as compared to the structure and evolution of living systems, 
remains an extremely difficult task. We can no longer satisfy ourselves by using 
oversimplified abstract models, usually based on pure intuition; neither can we carry 
out experiments without bearing in mind what we have learned of the universal 
behaviour of evolving systems. Unfortunately, there is still a lack of tools to connect the 
universal descriptions and their observed implementations in experimental systems; 
not only practical tools, but also intellectual ones, to characterize the universal in the 
particular, and to reduce the particular to the universal. 

This is already difficult to achieve for many simple temporal behaviours, as soon as 
one pretends to describe most of their qualitative features. It is necessarily much more 
difficult for spatial behaviours. Considering that most of what could be obtained by 
simple means, in modelling experimental temporal homogeneous behaviours, has been 
reached, clearly the understanding and control, of spatial behaviours, of un- 
predictibility, both stochastic and chaotic, of heterogeneous aspects, remain as 
outstanding challenges. It should be considered as an example of the present-day 
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attempts, in many fields of science, to design new and specific tools to investigate the 
complexity of nature. 

Appendix 

A BZ reagent exhibiting oscillations and chemical waves 
Readers who have never seen the behaviours we are dealing with are strongly 

encouraged to experiment with the BZ reaction. It is so easy to handle and so nice to 
look at! Standard chemicals are readily available and no special care is required. 
Contamination by C1- ions, which poison the BZ reaction, must be thoroughly 
prevented beware that certain commercial ferroin solutions do not fulfil properly this 
condition. At room temperature, the following aqueous reagent gives rise to 
oscillations in a stirred vessel, and to target patterns (Plate 3) when poured onto a 
surface so as to form a layer of approximately 1 mm depth: 

Br0,Na : 030 M 
CH,(COOH), : 0.08 M 

H2S04 : 0.010 M 
Ferroin : 0.004 M 
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